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Chapter 10
The Invertibility of Distance Matrices

Michael F. Goodchild
Department of Geography
The University of Western Ontario
" and
David M. Mark
Department of Geography
State University of New York at Buffalo

In informal discussion at a meeting at the Lincoln Land
Institute in Boston in May, 1983, Charles Schwartz, of the
National Geodetic Survey, US Department of Commerce, posed
the following conjecture concerning distance matrices:

The Euclidean distance matrix for any set of
distinct points in the plane can be inverted.

By coincidence, a related conjecture with similar motivation

appears to have been made at a conference in Italy by R.

Franke (Franke, 1983). A paper by Micchelli (1986; see also
Dyn, Goodman and Micchelli, 1986) proves the Franke
conjecture (and perhaps by extension the Schwartz
conjecture), although we frankly confess our inabillity to
follow the mathematical argument. The purposes of the
present paper are to introduce the Schwartz conjecture and
its motivation to a broader audience, and to discuss its
extension to a more general case. While we are unable to
present proofs in the more general case, our analysis:
nevertheless yields interesting results.

This topic may appear impossibly arid and obscure for a
volume such as this. But on deeper examination it seems to
us extraordinarily appropriate, for two reasons. Throughout
his 1long career William Warntz has been perhaps the
discipline's strongest advocate of the fundamental
importance of geometry to our understanding of the earth and
the distribution of human and physical phenomena on its
surface., Writing in 1971, Warntz and Wolff saw geometry and
graphics as fundamental to geography, for which:

"The heavy use of the various geometries seems
assured. The distinctions between various
systematic branches of geography diminish at the
theoretical level as common spatial properties and
dimensional problems are recognized despite their
vast nonspatial dissimilarities...(B)ecause of the
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lushness of the spatial logic of geowetry, the
incisive nature of graphics in portraying and
discovering spatial relations, and the commitment
of geography to the study of spatial patterns in
the real world, the natural, but sometimes
overlooked, affinities of these three disciplines
can be a source of considerable intellectual
richness and scientific development with obvious
benefits to society through technology and
planning." {Warntz and Wolff, 1971: 254-5).

Distance plays a fundamental role in the connections
between location and geographical process; Tobler's "first
law of geography: everything is related to everything else,
but near things are more related than distant things"
(Tobler, 1970) is nicely put by Gould (1970: 443-4):

"Why we should expect independence in spatial
observations which are of the slightest
intellectual interest or importance in geographic
research I cannot imagine. All our efforts to
understand spatial pattern, structure and process
have indicated that it is precisely the lack of
independence - the interdependence -~ of spatial
phenomena that allows us to substitute pattern,
and therefore predictability and order, for chaos
and apparent lack of interdependence of things in
time and space".

The Schwartz conjecture seems to us to have much in
common with many of the geometrical and combinatorial
puzzles and conundrumg for which Bill Warntz's teaching has
been famous. Like the four-colour theorem it is simply
stated, yet its analysis provides substantial mental
stimulus; it has a geographical motivation, admittedly
obscure; it deals with geometrical fundamentals; and yet it
appears to defy simple proof.

DEFINITIONS

Matrix inversion is a fundamental procedure in linear
algebra, and arises in a number of problems in multivariate
statistics and spatial data handling. However, not all
matrices can be inverted: a matrix can be inverted if and
only if the determinant of the matrix is not zero (see, for
example, Lang, 1971). A matrix which cannot be inverted is
gaid to be singular. The determinant of a matrix can be

computed recursively as follows:

Let the matrix be denoted by A, with dimensions n by n.
Let the result of deleting the ith row and the jth column be
an (n-1) by (n-1) matrix denoted by >Mu. Then the
determinant of A is given by:
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Det(A) = (-1)3*1a;; Det(Agq) + ... + (-1)1*0 a; Det(ay,) (1)

M”M Mdoomm:um mm applied to successively smaller and smaller
rices until only one row and c¢
matrice olumn remain in each

The Franke conjecture is stated
rollomne ed by Micchelli (1986) as

Given any set of n distinct points in the plane,
form an n by n matrix C whose terms are given b
eqq = (1+44;2)1/2, un i i .
wm 13°) + where d;; is the distance
between points i and j. Then mﬂwvsnw Det C > 0.

Since nJm.mwmwmsom terms can always be rescaled, the 1s in
the definition of C ensure that all terms are positive,

whereas the Schwartz conjecture requi
- re
be zero. q s diagonal terms to

CONTEXT OF THE PROBLEM

Spatial analysis often involves sets of points distributed
over the surface of the earth, and it is common to compute
the matrix of distances between all pairs of points in such
sets. ) The result is a matrix which is square and
symmetrical, with diagonal elements equal to zero; provided
all the points are distinct, the elements off nrm diagonal
are all strictly positive. Gatrell (1983) has reviewed the

I o.._.m of dis tance matrices and their m:m.u..o in spa tial
gs

Although it is not common to invert a di i
wd to vm concerned with whether that ovmumﬁHOMnMMOMOMMMMWM.
inversion of related matrices is frequently necessary Hm
carrying out spatial interpolation using one of a number of
techniques x:osﬁ by different names in various disciplines
but most wmnms in geography and geology as Kriging Axnwmm.
1951; David, 1977; Hanham and Chang, 1985; Olea, 1974) Hm
order to see the motivation behind the Schwartz oouumawcum
we briefly review the essentials of Simple Kriging. a

Suppose we have sampled a surface at a number of points
located at Axw.zuv. i=1l,...,n, the height of the surface
awmmcumm at each of these points being denoted by =z &m
wish to estimate the height of the surface at points HManmm
dmnﬁmm: the sample points, and ultimately to construct an
estimate of the entire surface.

" Assume that the surface is statistically stationary, to
e mxamzn.nsmn w:m expected difference in height between
pairs of points displaced h from each other is zero, and the

variance between such pairs is a functi .
{ ion of th
displacement: e distance of
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E{z(x) - z(x+h)] = O (2)
var[z(x) - z(x+h)] = N_A_:_v (3)

where I'(|h|) is the semivariogram function and |n| am:owmm
the length of the h vector, or the distance between the pair
of points.

Given a set of sample points and an estimated
semivariogram function, Simple Kriging attempts to estimate
the height of the surface at some location x from a linear
combination of the known values:

2(x) = Doy z(xg) W
i

where the aj; are weights to be determined. It can be shown
that the weights which give unbiased and minimum variance
estimates are given by:

[r(ry),r(rz)e....T{ry},1] = [a,02, .+« »0n, ] [T(d3q) Tldgp) ... T(dgp) 1
—.A&N_.v —..?wNNv Ve ~AQN=V 1

T{dpy) Tldpa) +.. Tldpy) 1

1 1 1 [¢]

(5)

Solution of this set of linear equations requires the
inversion of an (n+1) by (n+l) matrix: if the variogram is
linear, as is frequently the case over the range of
distances encountered, then it is necessary to be able to
invert a matrix of distances, augmented by an additional row
and column of 1s. Similar situations arise in other,
related forms of spatial interpolation based on functions of
distance.

DISTANCE MATRICES

A distance matrix D can be defined as a (square) real
symmetric matrix in which the entry dij is equal to the
distance from point i to point j. If the distance is given
by:

djj = mAxwuxuvw + A<wazgvmup\m (6)

then this is a Fuclidean distance matrix.
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The Euclidean distance is one example of what is termed
a metric space (see, for example, Blumenthal, 1970). ' A
distance measure and the' associated space is termed metric
if and only if the following four properties hold for .the
distance D(m,n) between points m and n:

(1) D(m,n) = O if and only if m and n coincide
{nondegeneracy) ;

(2) D(m,n) > 0 (non-negativity);

(3) D(m,n)

D{n,m) (symmetry):
(4) D(m,n) + D(n,0) = D(m,0) (triangle inequalities).

Some common metric spaces include those defined by the
Minkowski metrics:

dij = [(xg-xj)P + (y5-y5)PI/P Q!
for pzl. Note that p=2 mmwwnmm the Euclidean (or L) space,
while p=1 is the well-known Manhattan or taxi-cab (L4)

space. There are many other metric spaces which do not
belong to this class.

ANALYTICAL STUDIES
Three Points
The simplest non-trivial situation is the case of three

distinct points in the plane. Let us denote the distance
matrix for these points as:

0O a b
D = a 0 c
b ¢ O

Applying the determinant formula given above will show that
the determinant of this matrix is just 2abc; since the
points are distinct, property (1) of a metric space requires
that none of a, b, and ¢ can equal =zero. Thus, the
determinant cannot equal zero. In the 3-point case, we need
not consider the triangle inequality or other distance
metric properties in order to establish that the determinant
cannot be zero and that the matrix is therefore always
invertible; the nondegeneracy and symmetry properties are
sufficient.
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Four Points

The situation for four points is far more complicated.
Again, for simplicity of notation, let the matrix be given
by:

0 a b ¢

a 0 d e
D =

b d 0 f

c e £ O

The determinant of this matrix is:
det[D] = (a2f2 + b2e? + c2d2) - 2(abef + acdf + bcde) (8)

Setting this equal to zero and solving the quadratic for a
glves:

a = [be + cdt 2(bcde)l/2] / ¢ (9)

To generate an example, we can set b=c=d=e=f=1; then the
solutions for a are O or 4. Thus the real symmetric matrix:

0 4 1 1

4 o 1 1
D =

1 1 0 1

1110

is singular (i.e., not invertible). Note, however, that
this could not be a metric distance matrix, since the
triangle inequality is violated by the triangles involving
link 1-2; (4,1,1) cannot be the side lengths of a triangle
in a metric space. This examples shows, however, that if a
matrix is real and symmetric, has zeros on the diagonal, and
is strictly positive off the diagonal, this is not
sufficient to guarantee invertibility.

Geometric Solution

We can also examine four points geometrically. Since
rotation and translation would not effect the distance
matrix for the Euclidean metric, and since scaling would
only multiply the matrix elements by a constant, we can
place the four points in any convenient coordinate system.
Let us denote the coordinates of the points by Axw.wwv.
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for i=1,...,4. Arbitrarily, place point number 4 at the
origin, and point 3 on the x-axis at (1,0)., ThuS X4=yj=y3=0
and x3=1. Then, by definition, this sets f=l. Now, giVen
that D(2,3)=d and D(2,4)=e, there are two posgible locations
in the plane for point 2. The equations for d nd e are:
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(x-1)2 + (y5)2  and
2

e (x2)2 + (y2)2 . (10)
Solving these simultaneously for x> and y, gives®

xp = [e2-d +1)/2 and

vo = t [2(e2+d2+d22) - (ehrate1y11/2 /2 (11)

We will arbitrarily take the positive y, solutioP which now
fixes the coordinate transformation.

Similar analysis applies to the position ©f Point 1.
D(1,3)=b and D(1,4)=c, giving:

UN AXHIHVN + A%HVN and

2

Axpvm + (y1)2 (12)
Solving these simultaneously for x1 and y; gives®

Xy = [c? - b2 + 11 /2 and

i

1 + MNA0N+UN+UNONV - AO#+Ue+quH\N /2. (13)
Since all the degrees of freedom in the Ccoordinate
transformation have been removed, there are twO POssible
locations for point 1. Since a=D(1,2), there are thus two
possible values for a, given the other five interpoint
distances. If it can be shown that this and equétion 9 can
never be satisfied by the same set of values for
(b,c,d,e,f), then this would constitute a proof that all 4 x
4 Euclidean distance matrices are invertible, It would not
necessarily apply to other metric spaces, nor does it
generalize in any obvious way to cases of more than U4
points.

SIMULATION STUDIES

One approach is simply to search for counter-éXamples by
means of simulation. Failure to find a counter-€Xample by
this method would, of course, not prove the Schwartz
conjecture, but such an approach could disprove it by
discovering such a counter-example. Otherwise, the
procedure increases the veracity of the conjecture: All of
the simulations reported below were conducted using 60-bit
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floating point precision on a Cyber 840 at CSIRONET,
Canberra, Australia.

The problem of finding a set of distinct points in the
plane whose distance matrix is singular can be re~-cast as
follows. Consider a set of n-1 distinct points at fixed
locations in the plane. Then, let (x,y) be the position of
the n-th point, and Det(x,y) be the determinant of the
distance matrix for the set of n points when point n is
located at (x,y). Det(x,y) will be zero when (x,y)
coincides with any of the first (n-1) points; if it is zero
anywhere else, then the conjecture will be false. In the
latter case, there may be regions of the plane in which
Det(x,y)<0, and others where Det(x,y)>0; the boundary
between these regions (the zero-set of Det(x,y)) would
provide counter-examples to the conjecture. Thus, if for
any particular n, the sign of the determinant is invariant,
the conjecture gains further support. Of course, even if
this can be proved, a complete proof of the conjecture would
also have to show that there are no other points in the
plane at which Det(x,y)=0, end further that this holds for
all possible distinct sets of (n-1) points.

To begin the simulation studies, we distributed sets of
random points over the unit square, computed Euclidean
distance matrices for the points, and then computed
determinants. The matrices analyzed involved sets of
n=4,5,..,9 points. For each n, 1,000 replications were
conducted; in no case was a distance matrix found to be
singular. Of course, numerical properties of discrete
representations of real numbers on computers make values of
exactly zero extremely unlikely. However, in all of the
simulations, the sign of the determinant was invariant for
each value of n; the determinant was always negative for
even n and positive for odd n. The fact that the sign is
constant for each n strongly suggests that singular distance
matrices for sets of n<l0 distinct points in the plane are
impossible. In addition, the sign is consistent with the
Franke conjecture. Of course, we can state with complete
confidence only that singular distance matrices are very
unlikely.

In the analytical section above, we derived a 4 py 4
real symmetric matrix, with zeros on the diagonal and no
zeros off the diagonal, which nevertheless was singular. We
observed, however, that the matrix violated the triangle
inequality property of metric spaces. To explore this
aspect of the conjecture, further simulation studies were
conducted. In these simulations, we focussed on observing
the sign of the determinant.

The basic analyses involved 1,000 replications for each
n between 4 and 9, inclusive. First, matrices of size n by
n were filled with random numbers uniformly distributed in
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the interval from O to 1; in each case, the numbers of cases
with positive and negative determinants were approximately
equal. However, if the diagonal was zeroed, the results
were as follows:

sign n=4 5 6 -7 m. 9
+ 68 851 258 659 384 574
- 932 1k 7h2 3Bl 616 426

For each n, there is a preponderance of matrices with
determinants having the same sign as for actual distance
matrices of the same size; however, there is a clear trend
toward equal numbers of positive and negative determinants
with increasing n.

If symmetry is imposed on the matrix by replacing each
term muu by Ammq+auwv\m {in addition to a zeroed diagonal),
the results are more complex:

sign n=4 5 6 7 8 9
+ 4o 201 753 571 236 585
- 594 799 247 kmw 764 h15

The meaning of this pattern is unclear.

Finally, we required the random numbers to obey all
triangle inequalities; these simulated matrices have all of
the major properties of a distance matrix, but still may not
be realizable as a set of distinct points in the Euclidean
plane. To impose the constraints we simulated the upper
triangle; the lower triangle follows from the symmetry
constraint. The first row of the upper triangle was filled
using independent random numbers, in the interval 0.0 to 1.0
as before. In the second and subsequent partial rows of the
upper triangle there are constraints on the range of each
element if the triangle inequalities are to be satisfied;
these constraints are imposed by the cells already filled.
Consider cell j,k, j<k. Examine all rows i<j<k; these will
be located above row j. Then the value placed in cell j,k
must be no larger than the sum of cells i,j and i,k, for all
i<j. Similarly it must be no 1less than the absolute
difference between the same two cells, again for all i less
than j. This gives a range of feasible values for j,k, and
a value can then be assigned by generating a random value in
this range. In all of our trials the range of permissible
values never vanished for any cell. Clearly the resulting
values are not independent, but they are symmetrical,
positive with zeroes on the diagonal and obey the triangle
inequality.
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The results for 1,000 trials at each value of n are:

sign n=4 5 6 7 8 9
+ 0 1000 1 990 22 899
- 1000 0 999 10 978 101

Thus, the addition of the triangle inequality constraint
almost, but not quite, replicates the results for actual
Euclidean distance matrices. A run of 10,000 trials at n=5
produced one negative determinant, but 100,000 trials at n=l4
produced no positive ones. The unusual n=5 matrix had a
determinant of =-0.00497; by adjusting one off-diagonal
element in a way which did not violate any triangle
inequality, a matrix with a determinant with an absolute
value of less than 10”7 was found. This matrix can be
associated with a set of 5 points in Euclidean U4-space, but
cannot be plotted in the plane. So we can reach one of two
conclusions: either forcing the points into the Euclidean
plane adds further constraints which guarantee
invertibility, or the conjecture is false, but only very
rarely.

CONCLUSIONS

As we noted at the outset, the Schwartz conjecture is simply
stated, but to date no similarly simple mathematical proof
of its truth has been found. Our simulations show that it
is clearly not true of matrices which do not obey the rules
of metrics, and it appears not to be true of metrics in
general. Relaxing the requirement that terms be Euclidean
distances between points in the plane, but maintaining the
triangle inequality and other requirements of metrics
produces matrices which violate the Schwartz conjecture with
increasing frequency as the number of points increases. It
is not clear from our simulations whether the Euclidean
metric 1s necessary, or whether any metric in two-
dimensional space would be sufficient. However, it seems
unlikely that either requirement would be sufficient to
distinguish between a rare condition and an impossible one,
so as in the case of the four colour theorem we are left
with the intuitive feeling that it might be possible to find
a counter example. But our work offers no clues as to the
likely configuration of points.
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