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Abstract. Fractal concepts have attracted substantial popular attention in the past few years. The key
ideas originated in studies of map data, and many of the applications continue to be concerned with
spatial phenomena. We review the relevance of fractals to geography under three headings; the response
of measure to scale, self-similarity, and the recursive subdivision of space. A fractional dimension
provides a means of characterizing the effects of cartographic generalization and of predicting the be-
havior of estimates derived from data that are subject to spatial sampling. The self-similarity property
of fractal surfaces makes them useful as initial or null hypothesis landscapes in the study of geomorphic
processes. A wide variety of spatial phenomena have been shown to be statistically self-similar over
many scales, suggesting the importance of scale-independence as a geographic norm. In the third area,
recursive subdivision is shown to lead to novel and efficient ways of representing spatial data in digital
form and to be a property of familiar models of spatial organization. We conclude that fractals should
be regarded as a significant change in conventional ways of thinking about spatial forms and as providing
new and important norms and standards of spatial phenomena rather than empirically verifiable models.
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T IS clear from recent general-interest articles

in a variety of journals and magazines that the
concepts loosely associated with the term *‘frac-
tals’’ have broad general appeal (see for example
the Economist of 8 September 1984; the New Sci-
entist of 4 April 1985; the New York Times of 22
January 1985; Science of 3 August 1984). It is
evident from the text and illustrations of Mandel-
brot’s two definitive books on the subject that
‘“fractals’’ are concerned, at least superficially,
with spatial phenomena (Mandelbrot 1977, 1982by);
those books deal in part with simulation of terrain
and in part with measures of length and area of
geographic features, expanding on work dating back
to the late 1960s (Mandelbrot 1967, 1975a). It is
appropriate, then, to undertake a more thorough
and dispassionate review of the significance of these
ideas to the spatial analytic tradition of geography.
Though we find much of the hyperbole of the pop-
ular pieces cited above to be extravagant, we do
believe that, based on breadth of impact alone,
these are among the more significant mathematical
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ideas of recent times and that they are of direct
relevance to a number of areas of spatial analysis.

If a line is measured at two different scales, the
second larger than the first, its length should in-
crease by the ratio of the two scales; areas should
change by the square of the ratio. Yet because of
cartographic generalization, the length of a geo-
graphical line will in almost all cases increase by
more than the ratio of the two scales because new
detail will be apparent at the larger scale. In effect
the line will behave as if it had the properties of
something between a line and an area. A fractal
is defined, nontechnically, as a geometric set —
whether of points, lines, areas or volumes — whose
measure behaves in this anomalous manner.

The emphasis of this paper is on particular classes
of fractals and on their applications to spatial phe-
nomena. We note, however, that other fractal
functions should be of interest to geographers and
that other aspects of spatial phenomena can be
modeled by fractals. For example, Mandelbrot and
Wallis (1968, 1969) used fractal functions to model
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hydrologic time series; Mandelbrot (1975b) also
presented a fractal analysis of turbulence in fluids,
work that should be of interest for both hydrologic
and atmospheric flows. Also, Lovejoy and his
coauthors have applied a fractals model to link the
spatial distributions of rainfall, clouds, and other
atmospheric phenomena (Lovejoy 1982; Lovejoy
and Schertzer 1983; Lovejoy and Mandelbrot 1985;
Lovejoy, Schertzer, and Ladoy 1986). Burrough
(1983a, 1983b) applied a fractal model to the spa-
tial distribution of soil properties. Only space con-
straints prevent us from reviewing these applications
of fractals to spatially related phenomena.

This paper is organized in three sections, which
consider in turn the relevance of three basic con-
cepts: response of measure to scale, self-similar-
ity, and recursive subdivision of space. Each of
these will be defined in the appropriate section.
The organization is largely for convenience of pre-
sentation and should not be taken to imply any
degree of mutual exclusivity between the three
concepts or the corresponding sections.

Response of Measure to Scale

A circle of unit radius about the origin, defined
by the mathematical function x> + y2 = 1, has a
well-defined area and circumference length that
can be verified empirically to the accuracy of
available instruments. The cartographic represen-
tation of the shore of an island, on the other hand,
is allowed to depend on scale through the process
of cartographic generalization, and scale will
therefore affect both length and area measures. As
scale increases, more and more detailed irregular-
ity will become apparent, raising the question of
whether any finite limit exists for length. The fact
that measured length increases with increasing ac-
curacy of measurement was noted by Steinhaus
(1960) and is sometimes known as ‘‘The Stein-
haus Paradox’’ (Coffey 1981, 95; Bibby 1972).
Mandelbrot (1967). and Maling (1968) also dis-
cussed this point and examined whether the amount
of change in measure can be predicted; the same
issue can be raised for cartographic lines in gen-
eral (Buttenfield 1985).

The practical importance of this issue is not im-
" mediately apparent but has been growing rapidly
in recent years. Richardson’s (1961) reasons for
carrying out one of the earliest studies of the re-
lationship between cartographic line length and scale
were to test hypotheses concerning the propensity
to conflict between pairs of nations and the length
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of common boundary. He observed that any ob-
jective method used to ‘measure the length of an
irregular line has an implied sampling length, in
the form, for example, of the diameter of a wheel
rolled along the line or the step size of a pair of
dividers. For many years, the forest products in-
dustry and its regulatory agencies have relied on
dot planimetry to measure the area of irregular
stands, with an accuracy clearly dependent on the
density of dots (see, e.g., Barrett and Philbrook
1970). More recently the development of remote
sensing and geographic information systems has
made more and more cellular spatial information
available for decision making, much of it in the
form of estimated geometrical measures such as
areas, lengths, and point counts. In such systems,
the role of cartographic scale, and associated gen-
eralization, is played by such parameters as pixel
size or the precision with which a digitizer oper-
ator follows a line.

Richardson was able to show that over a wide
range of scales there is a tendency for the length
of a variety of cartographic lines to behave in a
predictable fashion such that when length is plot-
ted against sampling interval on logarithmic scales
the points tend to follow a straight line. Not only -
does more detail become apparent at larger scales,
but it tends to do so at a predictable rate.

The more general implications of this observa-
tion were pointed out by Mandelbrot (1967, 1975a;
and see Scheidegger 1970, 8-9), and the behavior
of cartographic lines, particularly representations
of coastlines, has become one of the best-known
aspects of the fractal literature. One may define
the Hausdorff-Besicovich dimension D of an ir-
regular line as follows. Suppose that the length of
the line is estimated by stepping dividers along the

" line with step size s, and that r; such steps are

required to span the line, giving a length estimate
of nys;. We now repeat the process with a smaller
step size, s, and obtain another length estimate,
n,s2, which is greater than or equal to the previous
one. The more irregular the line, the greater the
increase in length between the two estimates. Then:

D = lOg (I’lz/ﬂl) / lOg (S]/Sz). (1)

If the line is smooth, then a halving of step size
or sampling interval will require precisely twice
as many steps, and D will equal 1; but if it is
irregular, then D will be greater than 1.

A similar argument using square pixels to mea-
sure the area of an irregular patch or a rough sur-
face can be used to show that if the length of each
pixel’s side is halved, at least four times as many
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pixels will be required to cover the same patch or
surface, leading to a value of D of 2 or greater.
In the limit of an irregular line that completely
fills the plane, the value of D reaches an upper
limit of 2. Similarly, an infinitely rugged surface
that fills the third dimension has a limiting frac-
tional dimension of 3, whereas a smooth surface
has a D of 2. D can also be defined for point sets
in a similar fashion.

Mandelbrot (1977) coined the term fractal to
describe any function for which the Hausdorff-
Besicovich dimension exceeds the topological di-
mension (e.g., 0 for points; 1 for lines; 2 for areas);
for such functions, D is commonly termed the
fractal dimension.

The problem of measuring D from a digitized
version of a cartographic line has aroused a certain
amount of interest, as it is desirable that the pro-
cedure be as simple as possible. Suitable algo-
rithms have been described by Shelberg,
Moellering, and Lam (1982) and Shelberg and
Moellering (1983), and more recently Eastman
(1985) has described a measure based on angles
between adjacent segments that is closely related
to D.

It is easy to show that the slopes of Richard-
son’s (1961) plots are equal to 1-D and that if the
points fall on a straight line, this is diagnostic of
a feature with a constant fractional dimension over
a wide range of sampling intervals. The implica-
tions of this observation are quite profound, and
they led ultimately to the choice of title for Man-
delbrot’s 1982 book, The Fractal Geometry of Na-
ture, and to many of the more extravagant claims
being made of the field. First, the concepts of a
fractional dimension and dependence of measure
on scale are quite foreign to much of mathematics
and may therefore offer the first effective tools for
understanding the irregularity widely observed in
the geometry of real phenomena. Second, the nu-
merical value of D may be the most important
single parameter of an irregular cartographic fea-
ture, just as the arithmetic mean and other mea-
sures of central tendency are often used as the
most characteristic parameters of a sample. And
finally it appears that such seemingly chaotic fea-
tures as coastlines may behave in certain ways
with substantial regularity.

The response of measure to scale has some other
interesting implications. Woronow (1981) char-
acterized the shapes of ejecta blankets on Mars by
a measure of shape relating perimeter to area. As
the shapes are irregular, they can be treated as
fractal curves. To compensate for the effect of
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scale on the estimated length of perimeter, Wo-
ronow created a dimensionless shape measure by
dividing perimeter by area to the D/2 power, rather
than the square root of area. Church and Mark
(1980) discussed the relation of the fractals model
to a similar situation involving mainstream length
and basin area.

Several recent studies have explored the gen-
érality of Richardson’s observations, in effect
evaluating the goodness of fit between real phe-
nomena and a fractal of constant D. Goodchild
(1980) showed that although Richardson’s data for
the west coast of Britain had produced a straight
line, a similar analysis of the east coast showed
two distinct domains, one being relatively smooth
(low D) at large scales and the other relatively
rugged (high D) at small scales. In the same paper,
a reanalysis of data on Swedish lakes collected by
Hékanson (1978) showed substantial departure from
straight lines. In a more systematic study of the
topography of Random Island, Newfoundland,
Goodchild (1982) found that the coastline, the 250-
ft. and 500-ft. contours, and the lake shorelines
all displayed straight-line plots of number of steps
against step size, and thus constant D, but that D
varied systematically from low values near the shore
to higher values on the plateau of the island. In
an analysis of digital elevation models of the to-
pography of several areas of the U.S., Mark and
Aronson (1984) found distinct horizontal scale do-
mains within which D remained substantially con-
stant but had sharp breaks of slope at certain
sampling intervals. D was usually much higher at
longer horizontal scales (intervals greater than about
600 m) than over shorter distances. Both studies
concluded that the domains could be interpreted
in terms of the different geomorphological processes
and geological constraints operating either at dif-
ferent elevations or at different scales, Bradbury,
Reichelt, and Green (1984; see also Bradbury and
Reichelt 1983; Mark 1984) found differences in
D with scale for coral reef contours, and related
these differences to ecological processes. Similar
comparisons of real phenomena with the fractal
model have been reviewed by Burrough (1981).
Brown and Scholz (1985) examined the fractal di-
mension of topography of natural rock surfaces at
scales between 20 microns and 1 m.

It is quite clear from this work that most real
coastlines and other spatial entities are not fractals
in the pure sense of having a constant D but in a
looser sense of exhibiting the behavior associated
with noninteger dimensions. D thus provides a
characteristic parameter whose variation can be
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usefully interpreted in terms of the processes that
have influenced the entity’s development.

Fractional dimension is clearly unique in its
ability to predict the effects of generalization and
spatial sampling. Goodchild (1980) showed that
D can be used to estimate errors in dot planimetry
and by extension to optimize dot density, and a
similar approach can be applied to pixel sizes in
remote sensing. Consider for example a LAND-
SAT scene for which all pixels have been correctly
classified to show presence or absence of wood-
land. The total area of woodland is computed by
counting pixels, but the size of the pixels will
clearly affect the accuracy of the estimate, which
will be much lower if the woodland is scattered
over the scene in small parcels than if it is con-
centrated in one, singly bounded circular patch.
The standard error as a percentage of the area es-
‘timate can be shown to be proportional to a(1-D/
4) where a is the area of a pixel and D is a char-
acteristic parameter of the phenomenon. Standard
error will thus depend on a!/? for highly scattered
woodland and a¥* for single, circular patches with
smooth boundaries (see Goodchild 1980 for the
derivation of these results and their relationship to
the literature in this area). The former result is
readily obtainable from the standard deviation of
the binomial distribution.

Self-Similarity

A feature is said to be self-similar if any part
of the feature, appropriately enlarged, is indistin-
guishable from the feature as a whole. The term
‘‘indistinguishable’” can be taken in its precise sense
for regular features such as the constructions dis-
cussed in the next section, but clearly requires
further interpretation for irregular features. We de-
fine an irregular feature such as a coastline as sta-
tistically self-similar if both the feature as a whole
and any parts of it, suitably enlarged, were gen-
erated by the same stochastic process. Empiri-
cally, this means that we will be unable to reject
a null hypothesis to that effect: in more general
terms, all differences can be ascribed to chance.

It follows from this definition that irregular self-
similar objects must have constant fractional di-
mension. Furthermore, as such objects are unaf-
fected by enlargement, they must appear
indistinguishable at all scales. An image or model

of a self-similar object would thus possess no vis-

ual cues as to its scale, and an observer would be
unable to estimate its size.
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The probability distributions governing the sizes
of self-similar phenomena must also lack charac-
teristic scales, and it follows that they must there-
fore be hyperbolic or Pareto distributions of the
form:

PriX >x) = kx? (P))]

where Pr(X > x) denotes the probability that the
size X of an object exceeds a value x, k is a con-
stant of proportionality, and a is a constant power.
Hyperbolic distributions have the rank-size prop-
erty that if the size of the object is plotted against
its rank in the sample, with the largest object as-
signed the rank 1, and using logarithmic scales,
then the points will fall on a straight line. Curl
(1960, 1966, 1986) has shown that cave lengths
have this property and has explored the possibil-
ities of a fractal model for caves. The well-known
rank-size property (for review see Richardson 1973)
thus establishes self-similarity in city size distri-
butions, although not in their spatial arrange-
ments. Hyperbolic distributions are observed for
an enormous variety of phenomena, many of them
geographic, ranging from the areas of the world’s
lakes to the heights of tall buildings in major
American SMSAs. Kordak (1940) and Fréchet
(1941) were among the first to recognize this em-
pirical regularity of the areas of lakes, areas of
islands, and lengths of rivers, and it has come to
be known as ‘‘Kor¢ak’s Law.’’ The heiglits of the
tallest mountains are not hyperbolic, however, be-
cause of obvious limits to growth.

Fractional Brownian motion (fBm) provides a
relatively straightforward method of generating ir-
regular, self-similar surfaces that resemble topog-
raphy and that have known fractional dimension
(Mandelbrot 1975a). Since the publication of
Mandelbrot’s first book (Mandelbrot 1977), this
class of functions has attracted considerable atten-
tion as a method of simulating topographic sur-
faces. The functions are characterized. by
variograms of the form:

Elz(x) — z(x+d)]?> = k (Jd))** (3)

where E[ ] denotes the statistical expectation, z(x)
is the height of the surface at coordinates denoted
by the vector x, d is a displacement vector, k is a
constant, |d| is the magnitude (length) of the dis-
placement vector, and H is a parameter in the range
Oto 1. In other words, two points a given distance
apart are expected to have elevations whose squared
difference is proportional to that distance to the
power 2H. Figure 1 shows example realizations
of fBm for various values of H.



‘\ ’“ “'0\

ail M,
oLy ‘h.tw,

] \‘

’A‘ An s
"'\\\ ’W AN )
i M}' 'lh)« ". (,m ém’fm

o

»l K '0:‘
\Y" \ DRI

AR AN ';4. !
"’ S W LY
G ‘l““"’“ N ' A’ (Y
N ". T ',.L‘Q, “\‘ ;“f)\" \(‘\04”»4“‘ M m l'
‘ '“ lp 1"’} \ 7 ”u
‘.',.A‘“,N' ..‘u"‘ ,‘AAA “4), b
"'I;‘ {‘\‘ ¥ K] %

lu qff ‘m

1.' . \
u Of
" u \fl[

"71 41.
‘ “ l. ﬁr
l’:”,

.n\

A v
'v\\' l.fi\\\ U «,ﬂn
4[»‘1 ',.

l "

v[ X!
“"r, .

8

(
.m

.\" ' b
N d ¢
o, AA’“““\'\.\\‘\T"ln ‘N‘\'“" “‘ “‘ l
e Q\»l m \\‘l “"/ ;“,* "h \ [}' .\’l‘\ '}‘/f‘
u.\u ‘« ,}II; X "t""”‘s‘
rM;, o ,\t,m0 '
‘ \'l"":ﬂ\\ "\‘ "?:\ /)0 f:" M
1 ! Fa "‘ ,/, I
0 ”(v

}
gD
NGl R "
ql '\\?’ ,'5 ‘:0
G i \ ,'.l‘ ,I
‘h:" \";,"[\" “

% ¥

1,.

Figure 1. Self-similar surfaces generated with a fractional Brownian process using a range of values for the A
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Orey (1970) has shown that the parameter H of.

an fBm surface is linearly related to fractional di-
mension D. Contours of the surface are lines with
dimension 2-H, and the surface itself has dimen-
sion 3-H. We thus have a convenient way of gen-
erating self-similar objects of known D. Of greater
significance, however, is Mandelbrot’s discovery
that certain values of H in the range 0.6 to 0.9
generate surfaces with striking similarity to real
terrain. With sophisticated graphics display de-
vices, snow patches, lakes, and tree cover can be
simulated very convincingly (see for example
Mandelbrot 1982b; Greenberg et al. 1982; Smith
1982). Such simulations have now been carried to
a fine art by computer graphics specialists working
in the motion picture, video game, and flight sim-
ulator industries.

The most successful value of H for simulating
topography is approximately 0.7 (contour dimen-
sion 1.3), which results in surfaces suggestive of
lunar topography or the very rugged terrain with
strong local relief typical of dead ice topography.
By flooding the surface to a certain level it is
possible to generate reasonable replicas of com-
plex island archipelagoes such as those of South-
east Asia. Few physical geographers would be
willing, however, to extend the range of success-
fully simulated topographies very far. The char-
acteristic of fBm realizations that peaks and pits
occur randomly and with equal density is clearly
a limiting factor, as pits are very rare in most
terrestrial landscapes. In addition many real land-
scapes possess strong trends in elevation because
of underlying geological structures, whereas any
trends that may be apparent on fBm surfaces, par-
ticularly when A approaches 1, must be due strictly
to chance. Finally, at global scales there are strong
upper limits to topographic variance, implying an
H of 0.

Informal experiments by Mark and Aronson
(1948) using matched pairs of fBm and real terrain
have shown that geomorphologists and cartogra-
phers seem to have little difficulty in successfully
discriminating between them. The set of topogra-
phies acceptably simulated by fBm appear to be
those with the greatest degree of self-similarity,
whereas most real landscapes possess strong cues
to scale attributable to the geomorphological or
geological processes that have influenced them.
For example, such features as glacial cirques and
drumlins occur over relatively narrow ranges of
scale, and their appearance in a photograph of
landscape is sufficient to establish scale within
narrow limits. In general, most geomorphological
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processes appear to have differential effects across
scales, so that self-similar simulations appear to
the eye as raw and unmodified. Nevertheless fBm
provides a sufficient fit to real terrain for some
purposes and undoubtedly a better fit than any
other available random process (Mark 1978).

The form of a real topographic surface at any
point in time is the result of the action of process
on the forms that existed at previous times, and
models of physical landscape development must
therefore postulate some initial form on which
modeled processes can operate. The Davisian cycle
proposed an uplifted block as the initial form at
the beginning of each cycle (Davis 1899), while
Sprunt (1972) and Hugus and Mark (1984, 1985)
used a tilted plane (interpretable as fBm with H=1)
and Craig (1980) adopted a surface of random,
independent elevations, which is equivalent to fBm
with H=0. Both the block and tilted plane are
regular surfaces, so that in order to simulate an
irregular outcome it is necessary for an element
of randomness to be included in the simulated
process. That Davis failed to do this is evident
from the regular nature of his diagrams. Sprunt
(1972) introduced a random precipitation input,
whereas Hugus and Mark (1984, 1985) included
a random factor in the process-response part of
the model. The problem is avoided if the initial
surface form is irregular, and this, together with
the raw, unmodified appearance of fBm surfaces
noted above makes them particularly attractive as
neutral, initial forms on which to simulate geo-
morphic processes. Kirkby (1986) adopted this ap-
proach, using an initial surface consisting of the
sum of an inclined plane and a fractal. In sum-
mary, we argue that fBm provides a terrain that
is unreal only in its lack of modification and is
therefore of significant value for process simula-
tion. By contrast, scale-dependent alternatives such
as periodic (wave-like) surfaces are more readily
interpreted as the outcomes of certain types of
processes.

The hypothesis-testing tradition of statistics is
concerned with establishing the presence or ab-
sence of an effect by comparing an observed sam-
ple with what would have been expected had the
effect been absent. To be appropriate, then, a null
hypothesis should propose the absence of the ef-
fect but should reflect reality in every other re-
spect. If it differs in other respects as well, as is
frequently the case in practice, and the null hy-
pothesis is rejected, then it will be impossible to
know with certainty whether it has been rejected
because of the presence of the effect of interest or
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because of some other reason. In this conceptual-
ization, the other effects are equivalent to the as-
sumptions that often accompany a test. For
example, the null hypothesis in a r-test of means
may be rejected not only because of the presence
of a real effect, but also because the parent pop-
ulations are not normal or the variances are not
similar, _

It follows that the lack of an appropriate null
hypothesis can lead to serious difficulties of inter-
pretation. The significance of Horton’s (1945)
*‘laws’’ of channel networks became much clearer
after Shreve (1966, 1967) provided a random
model, or null hypothesis, of network topology
and showed that a good fit to the Horton law of
stream numbers probably ‘implies an acceptance
of the null hypothesis. More recent studies (James
and Krumbein 1969; Abrahams and Flint 1983;
Abrahams 1984b; see Abrahams 1984a for a re-
view of other similar results) have shown system-
atic deviations from the Shreve model, or rejection
of Hy, and these have often been interpreted in
geomorphological terms. However the random
model is concerned with topology alone and does
not include geometric constraints, which may be
added when stream networks are packed onto a
surface in an area of uniform precipitation and
which may influence the relative abundances of
different topologies. Specifically, some networks
are found (Abrahams 1984a) to show higher-than-
expected bifurcation ratios and to favor signifi-
cantly ‘‘fishbone’’ topologies over other types.

Abrahams (1984a), in a recent review of this
literature, found that such tendencies appeared more
common in high-relief basins, suggesting a geo-
morphological interpretation. Many studies have
concluded by accepting the Shreve model, or Hg,
but this outcome could be ascribed to insufficient
data, in other words Type 2 statistical errors (see
Abrahams and Mark 1986). The possibility still
exists, therefore, that these effects are due to the
constraints imposed by packing or to the inappro-
priateness of the null hypothesis of topological
randomness. Simulation would appear to offer the
only reasonable way of investigating this alterna-
tive.

Goodchild et al. (1985) described a series of
experiments in which tree networks were obtained
from fBm surfaces by a process intended to sim-
ulate the development of drainage. Each cell of a
258 by 258 array of elevations was compared to
each of its rook’s-case neighbors and coded ac-
cording to the following rules: 0, if no neighboring
elevation is strictly lower; 1,2,3,4, if at least one
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neighboring elevation is lower and the lowest is
up, right, down or left respectively. The bordering
cells were then discarded. Each code was taken to
indicate direction of drainage, with O’s represent-
ing sinks. All flows directly into sinks were in-
terpreted as the discharging links of individual
basins, and the entire population of basins was
extracted by search.

The simulated network populations obtained from
fBm surfaces differed from the predictions of the
topologically random model in several ways, and
in many of these there was agreement with pre-
viously observed deviations between the random
model and real networks. The relative abundance
of “*fishbone’” basins exceeded the model’s pre-
dictions, leading to differences in several aggre-
gate indices such as bifurcation ratios. This suggests
that the packing of basins onto surfaces does in-
deed bias populations to the point where devia-
tions are observed from the random model and that
therefore such deviations do not necessarily relate
to the processes of basin formation.

It would be inappropriate to argue at this stage
that the random model be replaced by fBm sim-
ulations as a null hypothesis for drainage net-
works, as we have already discussed several
arguments on which fBm could be rejected a priori.
The results indicate, however, the usefulness of
fBm surfaces in providing norms for the interpre-
tation of geomorphological observations. The
Shreve model provided such a norm for the Horton
laws and led to a radical change of interpretation.
But it seems unlikely that other areas of quanti-
tative geomorphology will be similarly amenable
to statistical analysis, and, as we have seen, even
the Shreve model may be an inappropriate norm
in certain respects.

In addition, we would argue that the irregularity
and unmodified appearance of fBm surfaces makes
them much more suitable for the simulation of
geomorphic process than are the alternatives that
have appeared in the literature, such as uplifted
and tilted blocks and independent, random ele-
vations. ‘

Recursive Subdivision of Space

Lines with the property of self-similarity can
readily be generated by one of a number of suit-
able recursive procedures, one of which is illus-
trated in Figure 2. A single square cell is first
divided into four equal cells, and the four central
points are then connected to form the letter N. The
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Figure 2. Recursive, self-similar generation of a space-filling (Peano) curve, the Morton sequence or N-tree.

process is then repeated in each of the four cells
to give a line connecting 16 central points. The
recursion, which is shown in Figure 2 up to the
next step of 64 cells, can clearly be repeated in-
definitely. This particular sequence was first de-
scribed by Morton (1966), and many other similar
recursive constructions are illustrated in the fractal
literature (see for example Mandelbrot 1977,
1982b). The method of generation is sufficient to
ensure that these regular curves are self-similar
with a constant D, in this case equal to 2.
Fournier, Fussell, and Carpenter (1982a, 1982b;
also Carpenter 1980; Fournier and Fussell 1980)
applied the same concept of recursive subdivision
to develop algorithms for the generation of irreg-
ular fractal curves and surfaces. An irregular line

can be generated by beginning with a straight line
and offsetting the position of its midpoint perpen-
dicularly by an amount determined by a random
number. The same process is then applied to the
two straight halves, and recursively ad infinitum.
In the case of surfaces, four random elevations are
first generated in the form of a square (Fig. 3).
The elevations of the five points at the next level
of subdivision are obtained from the means of the
existing neighbors, adjusted up or down by a ran-
dom number. The standard deviation of this ran-
dom disturbance controls the ruggedness of the
resulting surface. Similar processes can be used
to generate surfaces based on recursive subdivi-
sion of triangles.

Mandelbrot (1982a) has objected to these meth-
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q)\ 2b qb\ b 0 processes in the simulation of networks and trees.
>/ A recent paper by Arlinghaus (1985) has shown

that the central place hierarchy has the properties

of a fractal set, and Batty and Longley (1985) have

‘ used fractal structures in an experimental simula-

2b 2a 2b €a> 2b tion of the spatial structure of London. Lovejoy,
Schertzer, and Ladoy (1986) showed that the spa-

tial distribution of world meteorological stations

is a fractal set, which has implications for its abil-

Eb/ 2b Qa> fea 69 ity to detect certain types of weather phenomena.
The field of spatial data handling (which un-

derlies automated cartography, geographic infor-

2 mation systems, and much of remote sensing) has

2b 2a 2b ea/ 2b  traditionally seen the question of the digital rep-
resentation of space in terms of two alternatives,

raster and vector (for reviews of this issue and

compromise alternatives see Peuquet 1979, 1981a,

@ 2b 1b 2b 0 1981b). Both are intuitively familiar, raster as an

Figure 3. Order of computation for the recursive filling
of a grid in two dimensions. Given values for the cells
marked 0, the algorithm fills the others in the order: Ia,
1b, 2a, 2b, . . . . This is the sequence used by Fournier,
Fussell, and Carpenter’s (1982a) algorithm for the gen-
eration of surfaces having certain fractal properties.

ods on several related grounds: the resulting forms
are not self-similar; they lack the power-law var-
iograms characteristic of fBm; and their visual ap-
pearance is not as convincing. Significantly, he
identified the final objection as the most critical,
arguing that ‘‘the basic proof of a stochastic model
of nature is in the seeing’’ (Mandelbrot 1982a,
581). Self-similarity is a general property of real
landscape, he implies, and therefore any simula-
tions that lack it will be visually unacceptable and
furthermore will be widely perceived as such. The
fBm surfaces discussed in the previous section of
this paper were all generated by a different and
theoretically sound method involving the fractur-
ing of an initially flat surface by randomly located,
straight cliffs.

Despite these objections, both the regular curves
generated in Figure 2 and the recursive algorithms
of Fournier, Fussell, and Carpenter illustrate an
important implication of the self-similarity prop-
erty — that spatial form is the same at all scales.
The notion of scale independence of form has a
long history in the study of spatial organization,
appearing strongly in the hierarchies of central place
theory. Some of the implications of the fractal
concept of self-similarity for spatial organization
have been explored by Batty (1985), who notes
that recursion has also been applied to branching

analog of the written page and vector correspond-
ing to the free movement of the eye in surveying
a scene or the pen in drawing a map. The fixed
cell size of a raster representation implies a con-
stant scale of resolution.

Recently, the quadtree has emerged as an alter-
native form of spatial representation based on re-
cursive subdivision of space (for a review see Samet
1984); this representation has no obvious analog
in everyday human experience. Subdivision is
continued independently in each area of the map
to a level that depends on the local complexity of
data: in the case of a map of soil types, for ex-
ample, subdivision might stop when a cell con-
tained only one soil type or when some minimum
size was reached. Quadtree structures can be
searched more efficiently than rasters can be and

- generally require much less storage space.

Lauzon and Mark (Mark and Lauzon 1984;
Lauzon et al. 1985) described a variant of quadtree
spatial representation known as two-dimensional
run encoding (2DRE). Let the four quadrants of a
rule-of-four subdivision be ordered as lower left,
upper left, lower right, upper right, in other words
in the form of an N. The process of recursive
subdivision of quadrants is then precisely the
process of construction of the curve in Figure 2.
Suppose all cells are subdivided to the same low-
est level. Then in essence the structure consists of
a reordering of a row-by-row raster in a regular,
fractal curve. White (1983) has called a structure
based on this ordering an N-tree for this reason,
although the order itself was first implemented in
a spatial data handling system by Morton (1966)
in the Canada Geographic Information System (see
Tomlinson, Calkins, and Marble 1976).
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In a 2DRE structure, runs of cells of the same
type are compressed. Goodchild and Grandfield
(1983) compared 2DRE structures in terms of stor-
age efficiency using several different orderings (see
Fig. 4): conventional row-by-row rasters (row or-
der), row-by-row rasters with alternate rows re-
versed (row-prime order), N (Morton) order, and
another fractal curve known as the Hilbert-Peano
curve (pi order, so-named for its pi-shaped prim-
itive elements). In terms of storage efficiency, all
orderings should produce the same volume of data
if no spatial autocorrelation exists. If there is a
tendency for local homogeneity, however, the most
efficient ordering would be the one that best pre-
serves local spatial relationships. Using simulated
spatial data obtained from fBm surfaces, Good-
child and Grandfield (1983) were able to find some
limited storage advantage in orderings in which

I

THEEA
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(a) Row Order

4

(c) N (Morton) Order

Goodchild and Mark

every move was to a rook’s-case neighbor. This
is a property of the pi and row-prime orders, but
not of the Morton order or the conventional row-
by-row raster (see Fig. 4). Effective one-dimen-
sional ordering of two-dimensional space is a
problem of considerable theoretical and practical
interest.

Discussion and Conclusions

In dividing this paper into three sections, we do
not intend to imply that the three concepts rep-
resented are independent or unrelated. Indeed, self-
similarity follows directly from the notion of a
constant fractional dimension, and recursive sub-
division from self-similarity. Rather, the intention
has been to emphasize a successive broadening of
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Figure 4. Four space-filling curves that can be used to order the cells in a square image (after Goodchild and
Grandfield 1983). Note that the N-tree presented is a mirror image of the one constructed in Figure 2.
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scope from technical problems of measurement and
the explanation of Richardson’s empirical results
to the issue of a null hypothesis for terrain and
finally to more conceptual developments in the
recursive representation of space.

Also, our discussion has stressed mathematical
and theoretical aspects of fractals; fractals are not,
however, without applications in cartography and
spatial data handling. Often, generalized versions
of digital cartographic lines look angular and un-
realistic. Dutton (1980, 1981) has described the
use of fractal simulations to add realistic (yet spu-
rious) detail to generalized cartographic lines in a
reversal of the usual process of generalization; there
have been several other similar applications (Hill
and Walker 1982; Shelberg, Moellering, and Lam
1982; Armstrong and Hopkins 1983; Dell’Orco
and Ghiron 1983; Shelberg and Moellering 1983;
Shelberg, Lam, and Moellering 1983). In another
important application of fractals, several authors
(Goodchild and Grandfield 1983; Lam 1982; Lau-
zon et al. 1985; Mark and Lauzon 1985) have used
fBm surfaces as test data sets to investigate issues
of spatial data handling. They have argued that by
varying H, it is possible to produce a range of
lines and surfaces similar to many real carto-
graphic lines but with controlled statistical prop-
erties. Other researchers can conduct ¢comparative
studies by generating similar simulated test data
sets.

The significance of fractals clearly does not lie
in the explanatory power of fBm as a model of
terrain, despite Mandelbrot’s strong suggestions to
this effect (Mandelbrot 1975a, 1977, 1982b). The
issue of whether a stochastic process can ever be
regarded as an explanation has been discussed at
length in the literature and need not concern us
here; rather, it is evident that self-similarity is ex-
hibited only in limited regions and over limited
ranges of scale in real spatial phenomena. Never-
theless, both self-similarity and the concept of
fractional dimension provide useful reference
standards against which real phenomena can be
compared and measured. For some purposes, such
as the generation of test data for spatial data struc-
tures and the prediction of accuracy of spatial
measures, the assumption of a constant D is fre-
quently acceptable. Finally, there are no obvious
alternatives to D as a single characteristic param-
eter of cartographic features with application in
the prediction of the effects of generalization and
scale change.

The fractional Brownian process has been used
as a convenient way of generating self-similar sur-
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faces, and certainly such surfaces more closely
resemble some types of real topography than do
the results of any other available method of sim-
ulation. We have argued that in addition to its
popular acceptance in video games and science
fiction movies, fBm offers a unique tool to geo-
morphology as a null hypothesis terrain. Its self-
similarity gives it the appearance of rawness or
lack of geomorphic modification, suggesting fur-
ther application as an initial form for simulation
of process.

Data structures intimately related to fractals and
based on recursive subdivision of space are still
relatively novel in the field of spatial data han-
dling, and geographic information systems that
exploit them are still under development. It is al-
ready clear, however, that they add substantially
to the more traditional, intuitive options of raster
and vector.

The publicity that fractals and related mathe-
matical concepts have received is largely due to
their strong visual impact, and there is not sur-
prisingly a tendency to evaluate them in these terms.
Mandelbrot has argued repeatedly that visual ap-
pearance is the most important test of a stochastic
model of a natural phenomenon and that on this
basis fBm surfaces must be accepted as models of
terrain. This argument is of course unacceptable
to most geomorphologists, both in practice given
the limited number of terrain types with any re-
semblance to fBm and in principle given the known
properties of these simulations. We have argued
that it would be inappropriate to evaluate the use-
fulness of fractal concepts in spatial analysis in
this limited and somewhat superficial way. Instead
we have identified three interrelated conceptual
themes, with associated and substantial applica-
tions to certain areas of spatial analysis. Each one
represents a significant change in conventional
thinking, and together they seem to us to offer the
potential for significant advances.
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