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ABSTRACT

Agencies acquiring GIS hardware and software are faced with
uncertainty at two levels: over the degree to which the proposed
system wiil perform the functions required, and over the degree
to which it is capablé of doing so within proposed procduction
schedules. As the field matures the sécond concern is becoming
more significant. A formal model of the GIS acquisition process
is proposed, based on a conceptual level of GIS subtask defini-
tion. The appropriateness of the approach is illustrated using
performance data from the Canada Land Data System. It is possi-
ble to construct reasonably accurate models of system resource
utilization using simple predictors and least squares techniques,
and a combination of inductive and deductive reasoning. The
model has been implemented in an interactive package for MS-DOS

systems.

INTRODUCTION

The development of geographic information systems has now
reached the point where substantial numbers of turnkey production
systems are being acquired from vendors and installed in public
and private sector agencies. 1In many cases these agencies will
have made detailed plans for the use of the system prior to its
selection, 1including evaluation of workloads, and will have
required potential vendors to respond directly to these plans.
The vendor in turn will have provided information on the_extent
to which the proposed system is capable of performing the pre-

mmmmwwm work, both in terms of specific functions, and in overall
utilization of system resources.

In many ways this ideal, objective and precise model of the
system acquisition process is rarely achieved in practice. The
agency must first identify the precise products which it expects
to obtain from the system over the planning period, and the
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system products, For example, it is relatively easy for forest
managers to define an updated forest inventory map as the result
of overlaying recent fire polygons on existing forest inventory
polygons, but any lower level of subtask definition would presume
substantial familiarity with one or more GIS's.

There is a long history of debate in the performance evalu-
ation field over the extent to which one should regard the system
as a black box, observing the response of the system to given
inputs in a purely empirical context, or whether the approach
should be to some degree determined by knowledge of the algo-
rithms being used. For example, we might expect the major factor
determining execution time in a raster polygon overlay algorithm
to be the raster cell size, whereas a vector algorithm would be
more likely to depend on polygon counts, Lehman (1977) makes
this point, and notes that the need for empirical, black box
performance evaluation is in fact somewhat paradoxical since the
system under study is in principle perfectly understood. An
interesting commentary on the field by Wegner (1972, p. 374)
urges "a proper balance between gquantitative statistical tech-
niques and qualitative techniques of structural analysis”®,
although, somewhat surprisingly:

"Computer science is different in character from empirical
disciplines such as agriculture or physics. Agriculture and
physics are concerned with the study of natural phencmena,
while computer science 1is concerned with the study of man-
made phenomena. A computer system generally has a far
larger number of independently variable components than the
systems studied in agriculture or physics®,

The debate would seem to be more complex in the GIS field
where there is no control over the choice of algorithm used to
perform a given subtask, and where some of the operations being
modelled are manual or contain substantial manual components.
For example, it is essential to have a satisfactory model of
.digitizer throughput, including operator time spent correcting

NMerrors, if one is to make adequate projections of the number of
digitizer shifts necessary to complete a given workload. In fact
this has been one of the more uncertain elements in many GIS
acquisitions,

There is of course no chance than predictions . of system
utilization made from the results of performance evaluation will
be perfectly accurate. Many of the factors influencing through-
put cannot be predicted in advance, and others can be predicted
only with considerable uncertainty. Obvious candidates in the
first category are various types of hardware and software
failure, The task is best seen as a compromise between an exces-
sively elaborate model on the one hand, which would require too
much data collection and rigid adherence to planned production
schedules, and would be too sensitive to uncertainties, and on
the other hand too little effort at assessing the degree to which
the planned workload lies within the capacity of the proposed
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system. We assume t . .
evaluation is ::moommn”wwm the alternative of no prior workload

The empirical or Ped
mp statistical approach to performance evalu-

mww_ww smwmw%M.m: naﬂumm:nmsamumdm in a number of articles (see for example
sur: mmmnw<msw 1972; N3 and Tsao, 1972; Yeh, 1972; Bard and
Mm Mxvmnwamsnmw nmmmaniwounm. 1972), and the associated problems
conventional techniqu have been discussed by Nelder (1979). The
although Grenander m:ad is ordinary least squares regression
too rigid since it is L3530 (1972) comment that its use cannot be
usually impossible to meet the inferential

assumptions of the tecy . ; -
nonlinear regression. bnigue. Racite (1972) discusses the use of

FORMAL MODEL

We now present a
tion and benchmarking
given above.

formal model and notation for the acquisi-
process, following the conceptual outline

Th h . :
e agency has ammpumm a set of products R1,R2...Rj..., each

one in the form of a
of the two, and each m&ﬁhﬁrhhmmWWMImnM:no:ﬂ~ or some combination
IS operations or m:%m requiring the exécition of a sequence of
required in each year tasks. The number of each product type
3j Om_nsm planned period is denoted by Y;i.
ned by ‘an ordered set which may wsnwwwm
the same type of subtask, for exanple

1 1
several po.ygon ocmnpp<m. The subtask sequence for product i is

denoted by:

81 = (8i1:84, L 550..03 (1)
with each subtask mnmss from a library L, Sie € L for all iLt.
Each subtask a ip
measures of :nwpwnmn:
measure M, represent,
cime, operator time,
with appropriate units

the library is associated with a number of /.-
n, drawn from a standard set M. Each
some demand on the system, such as cpu
blotter time or disk storage requirement,
for a given. task can of ammmcnmamsn. The value of each measure’}
drawn from a be predicted from one or more predictorsy
. .mﬁm:mmna set P. The predictors for each
! such as number of polygons which can be

\ Note that the set of
measure may vary from subtask to subtask,
to product. The predictive equations for

predictors for a give
but not from product
each measure are funcy

lons:
m = f
ak ~bmwrvmxm...©mWS...v (2)
calibrated by least )quares regression or other means. The

precise choice of funy

empirical w:<mwﬂwamnwapoa will be determined by a combination of

h and analysis of the subtask structure.

501




utilization, we examine the
The predictors for each

To estimate
required subtasks for each product.
measure are determined from the planned production schedule and
used to evaluate the appropriate form of the predictive equation

system resource

(2). The measures are then summed for the product as a whole:

Wmi = I Wpit for all mai, a=S;¢ . (3)
t

and across products, weighted by the number required in each
year:

for all m (4)

to give total resource requirements which can be compared to
known capacities.

EMPIRICAL ANALYSIS

The Canada Land Data System (Canada Geographic Information
System) (CGIS) was designed in the early 1960's as a system for
input and analysis of a national land capability survey consist-
ing of multiple layers of polygon data. Its most significant
features are the use of a scanner for data input, conversion to
vector organization for storage, and a raster algorithm for poly-
gon overlay. Other features of the system will be noted during
the discussion which follows. The data to be analyzed were
collected during reqular production as part of the everyday CGIS
internal auditing process.

The data sets were all processed as part of a larger study
of ‘land use change in Canadian metropolitan cities. Four cover-
ages were processed for each of 6 cities, Windsor, London,
Kitchener, Hamilton, Regina and Montreal. All input was obtained
from complete 1:250,000 map sheets, the number of sheets varying
from 2 in the case of London to 9 in the case of Montreal. One
sheet was shared between Hamilton and Kitchener so its input
costs were incurred only once. In total 104 sheets were input,
for each of 26 map sheets and 4 coverages.

Three major subtasks have been identified in the input
process for the purposes of this study, and the resource utiliza-
tion expressed in dollars. Before scanning, each input document
must be copied by hand using a scribing tool, to control line
width and to ensure against spurious input. The costs of scrib-
ing (SCRIBE) are largely those of labour, and can be assumed to
depend on the length of polygon boundaries being scribed, and
also to some extent on the irregularity of the lines and on the
density of features. Following scanning the raster data is
vectorized and merged with polygon attributes in processes
referred to as steps 0 to 4, for which cost (denoted by 24) is
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primarily determined by computer use. CGIS processes its data
through a service bureau, so the costs given are those billed by
the bureau, as distorted by the peculiarities of the billing
algorithm and such factors as overnight discounts. The third
cost is that of manual error correction (MEC), which occurs
during input processing, and consists of the labour required to
identify and remove errors detected by software during vectoriza-
tion and polygon building. :

only one predictor is available for the three subtasks, in
the form of a count of the number of polygons on each sheet.
Although many more sensitive predictors might be obtained from
the data after input, such as counts of coordinate pairs or line
lengths, it is relatively easy to estimate polygon counts for
typical map sheets in advance. :

The four coverades used in the study are as follows:

Code Theme Mean Polygon
Count
040E,F Study area outline 3.2
100E Recreation capability 59.7
200E Agriculture capability 238.5
760X Land use change 1142.4

The theme of each sheet accounts for a large amount of the
variance in input costs: 40.l% of SCRIBE, 45.3% of 24 and 28.2%
of MEC. But almost all of this is because of variation in poly-
gon counts; although each coverage type has different conditions
of polygon shape and line contortedness, disaggregating by cover-—
age produces no significant improvement in our ability to predict
costs once polygon counts have been allowed for.

The best fit was obtained by a double logarithmic or power
law model of the form:

m = ap® (5)
where a and b are constants, calibrated by regressing the log of

each measure against the log of the predictor, in this case log-
(cost) against log(polygon count). The results are shown below:

Measure Variance b Standard error
explained of estimate
SCRIBE 843 0.69 0.30
z4 72% 0.31 0.19
MEC 68% 0.53 0.25
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The manual operation of scribing has the most predictable

costs in terms of variance explained. Assuming no variation in
-shape, on purely dimensional grounds we would expect nﬁm total
length of polygon boundaries: on a map sheet to be proportional to
the square root of the number of polygons. However the regres-
sion shows that scribing costs rise with n:m,o.mw power, indica-
ting that a higher density of polygons requires more effort per
unit length of line than the added line length would suggest, due
presumably to the added complexity of working with high densi-

ties.

We expect the vectorization steps to be relatively insensi-
tive to the number of polygons, and indeed the calibrated power
is the lowest at 0.31, indicating that a doubling of cost will
allow for the processing of a sheet with approximately eight
times as many polygons. MEC costs rise with the 0.53 power,
suggesting either that the probability of error is dependent on

length of line, or that the difficulty of correction is approxi-
Mately twice as great for a sheet with four times as many poly-

gons.

The standard errors of estimate are given above for each of
the three sets of costs. Since the regression was performed on
the logs of the cost values, a standard error of e must be inter-
preted as meaning that the error of prediction from the model is
“nMwwanH< a factor of 10€. 1In the case of SCRIBE, which has the
ilargest standard error, the error factor is therefore 2.0, mean-
ing that we will commonly observe actual scribing costs which are
half or twice the predicted value. Although this is a substan-

“@ tial uncertainty, it is very much less than the range of map
mﬁ y»sheet scribing costs, which vary from a low of $2 to a high of

over $2,000,

After completion of the input steps, including edgematching
of adjacent sheets, the data were merged into six data bases,
each with four coverages. The coverages were then overlaid using
the CLDS polygon overlay algorithm, which employs raster tech-
nigques to superimpose vector data structures. Both cpu time and
billed cost were available as measures for each overlay opera-
tion, the relation between them being proprietary to the computer
service bureau, and compounded by CLDS job scheduling decisions.
Linear regression of overlay cost on. overlay time showed that
only 74% of variance in cost is accounted for by variance in
execution cpu time. Total input costs for each city's data were
also available, but gave results which added little to those
already obtained for the map sheet data: since the largest
component of input cost is scribing, regression of total cost on
polygon count gave results very similar to those shown above for

SCRIBE.

The results of regressing log{overlay cost) and log(overlay
time) on the logs of various polygon counts are shown below in
terms of variance explained:
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-modelling:

Count Time Cost
Total output 85% 31%
Total input 79% 27%
040E/F 80% 53%
100E 59% 44%
200E 81% 46%
760X 732 21%

] The increase in uncertainty introduced by the billing algo-
rithm is clear in all cases. Not unexpectedly given the nature
of the overlay algorithm the best predictor is total output poly-
gon count, reflecting the cost of revectorizing the image after
overlay and building new polygon attribute tables. The estimated
power is 0.44, which compares well with the power of the 24
vectorization above. The standard error of estimate is 0.14, or
an error factor of approximately 1l.4. Although output polygon
count would not be available as a prior predictor of system work-
load, it is linearly related to total input count: for this
data, each input polygon generates on average 2.54 output poly-
gons, the input count explaining 85% of the variation in output
oocan asmamnmsamnawmnnon of estimate if log{input count) is
use to predict overlay time rat i
1335 manocedior aver y her than log(output count) is

From this analysis it appears to be possible, given stable
software and hardware and sufficient data, to model the perfor-
mance of a GIS at the level of the conceptual GIS subtask, and to
obtain reasonably accurate predictions of resource utilization.
As we noted above, there is no possibility of perfectly accurate
on the other hand, any reduction in uncertainty is
vnmmcamcww better than pure guesswork in system planning. The
same cmm*n approach of curve fitting seems to be suitable equally
for machine utilization as for purely manual or mixed manual and
amn:msm operations. The next section describes the operational-
ization of the model, including calibration steps, in an inter-
active package. ’

IMPLEMENTATION

The first author and Tomlinson Associates have implemented
the formal model and calibration procedures discussed above in a
mmnxmmm for MS-DOS systems identified as SPM. It is structured
in 8 interdependent modules linked by a master menu, as follows:

Module Function

1 Build, edit or retrieve the library of subtasks L.
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2 Input ordinal performance scores for each subtask fro
the results of a qualitative benchmark test.

3 Input definitions for a set of required vnoa:nnw
R} ,Rp..+Rj.., including required processing steps.

4 Generate a statistical report based on the m0wwpnw of
the system to produce the required products, given the
input performance scores.

5 Hnmcm values of suitable performance measures msm
mﬂmmnnn0nm from the results of a quantitative benchmark

est.

6 Construct and calibrate suitable models of each subtask
from the data input in the previous step.

7 Input predictor values measuring intended system work-
load for each product.

8 Compute and generate a statistical
cumulative resource utilization
intended workload.

estimates for the

Module 6 allows the user to choose from a wide range of
possible models, including additive and multiplicative combina-
tions of predictors, and various transformations of variables.
The values of constants can be obtained either by ordinary least
squares or by direct user input.

A recent test of the approach used data obtained by
Tomlinson Associates from a US National Forest GIS requirements
study. The Forest staff had previously identified a total of 55
GIS products which they,K planned to use in their resource manage-
ment activities in the first 6 years of GIS operation. The
combined production task required a total of 85 coverages or data
types to be input to the system, and a total of 51 different GIS
functions or subtasks to perform the required manipulations. The
::EWMN of subtask steps required for each product ranged from 5
to .

Because of the effort involved, benchmark performance models
were constructed using SPM only for the 8 most resource-intensive
subtasks, including polygon overlay, buffer zone generation and
edgematching. Four measures were used: cpu time, personnel
time, plotter time and disk storage bytes. The prédictive models
relied on a total of 11 different. measures, including polygon,
line and point counts as appropriate to each subtask. The final
results were expressed in terms of total resource requirements
for each product in each year of production, given the bench-
marked hardware and software configuration. )
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DISCUSSION

Agencies acquiring GIS's have had to contend with consider-
able uncertainty, first over whether the system being acquired
could indeed perform the necessary manipulations of spatial data,
and secondly over whether the computing resources of the system
were sufficient to meet required production schedules. GIS soft-
ware has now reached a stage of development where much of the
first form of anxiety has been removed: functions such as poly-
gon overlay and buffer zone generation now perform with reason-
able efficiency in most systems. However the models of system
performance required to reduce uncertainty of the second type do
not yet exist to any great extent.

The most critical step in modelling performance is the
definition of subtask. The conceptual level of subtask defini-
tion used in this paper matches the level used for most GIS user
interfaces, and is readily understood by agency staff not other-
wise familiar with GIS operations and concepts. The empirical
section of this paper has shown that it is possible to model
performance at this level even though subtasks may include sub-
stantial manual components and may have  to allow for unpredict-
able events such as hardware failure.

We noted earlier that any successful modelling effort must
not simply approach a system as a black box, but use knowledge of
the complexity of subtasks and GIS algorithms to anticipate
appropriate predictor variables and their role in the form of
predictive models. This point also applies to the design of
benchmarks, since the same arguments can be used to make suitable
choices of measures and predictors, and to design appropriate
variations of the key parameters. The number of independent runs
required to obtain a reliable calibration of a given model is
also determined by the number of variables and constants appear-
ing in the model: conversely, the choice of possible models is
constrained by the number of independent benchmark tests made of
each subtask.

In this paper we have assumed that the hardware and software
configuration benchmarked is also the one proposed for nnoacona
tion: no attempt has been made to develop models valid across
configurations., To do so would add a new level of difficulty to
the modelling which is outside the context of the present study.
On the other hand the choice of the conceptual level for subtask
definition allows the same general strategy to be followed what-
ever the configuration.

This last point restricts the applicability of this approach
to the context defined in the introduction, that of a vendor or
agency wishing to make a reliable estimate of resource utiliza-
tion for a given workload and a given system, It is not useful
for an agency wishing to make a comparison between alternative
systems, except as a means of mm<m~ov~=o information which might
later form the basis of the comparison.
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