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ABSTRACT

The fractional Brownian surfaces described by Mandelbrot (1) in connection with terrain
simulation can be used to investigate the basis for morphometric laws. Empirical regular-
ities of geomorphology wnich can be obtained equally from simulated surfaces where no geo-
morphic processes have operated should be interpreted as statistical artifacts., There are
‘certain ways in which real drainage networks are observed to deviate from the predictions
of the random topology model of Shreve (2,3). Analysis of drainage networks on simulated
surfaces shows similar deviations.

INTRODUCTION

The notion of using fractional Brownian (fBm) surfaces for the simulation of terrain
originates with the work of Mandelbrot and has attracted considerable attention (for review
see {1)). Goodchild (4) compared an island off the coast of Newfoundland to the fBm model,
and Mark and Aronson (5) have examined the fit of the model to terrain in the eastern US.
These fBm surfaces differ from real terrain in many ways, one of the more obvious ones
heing the equal abundance of peaks and pits, which is suggestive perhaps of karst or dead-
ice topographies but not of more general eroded landscapes. Nevertheless the fractional
Brownian process has certain attractions when compared to other available methods of
simulation. The self-similarity property ensures the absence of scale dependence in the
simulated landscape, so that it is impossible to a¢mn¢=a;*m= statistically between a part
of the landscape at one scale, and a smaller piece displdyed at a larger scale so as to
appear of the same size. Since most if not all geomorphic processes are scale-dependent,
having different degrees of effect on the landscape at different scales, a self-similar or
scale-ingependent simulation can be thougnt of as free of geomorphological influence. fBm
surfaces are thus a usetul starting point for the simulation of arosion processes.
Furthermore, this raises the passibility of using fBm surfaces as norms or standards
against which real, eroded terrain can be compared. Empirical laws which are found to be
true of real terrains but not of the simulated ones can therefore be interpreted as the
result of the operation of geomorphic processes, whereas any empirical regularities which
are found to be true of both real and simulated terrains are by implication statistical
artifacts of no geomorphological significance. Early simulations of drainage basin devel-
opment by Schenck (6) and others showed that randomly joining streams obeyed similar laws
to those found by Horton (7) for real stream networks, implying that it is not adherence to
but deviation from these laws that is significant in a geologic or geomorphologic sense.

The work of Shreve (2,3) placed these observations on a firm mathematical basis and led to
the random model of stream network development. All networks are assumed to be part of an
infinite topologically random channel network (TRCN) in which streams combine randomly so
that all possible topologies are equally likely. Later developments of the model by Shreve
and others led to predictions about associated geometries, but in this paper we are con-
cerned only with the notion of random topology and the results which derive from it.

Empirical tests of the random topology model have recently been reviewed by Abrahams (8},
who notes several ways in which real networks are consistently observed to differ from the
random model. For large basins (number of first order streams M > 50) there is a
tendency for bifurcation ratios to exceed the model's predictions, particularly in areas
of high relief. Similarly the proportion of first order streams which are TS links (join
to streams of order greater than 1) is found to be greater than the theoretical vatue of
50%. Abrahams (9) found a strong correlation between the amount of deviation from the
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model and the relative relief of the topography, whereas Howard (lU) proposed a mechanispm
based on stream capture.

The method of simulation used by Schenk (6) and others was to allow streams to wander ran-
domly over a square lattice, generating a move at each lattice cell from a random integer
corresponding to one of four possible move directions. Special means had to be devised to
avoid topological inconsistencies such as closed loops and spirals. The method used by
Seginer (11) avoided these problems by first generating a random surface, and then extract-
ing the stream network from it, thus ensuring topological consistency. A study by Craig
(12} of simylated erosion processes on surfaces extracted stream networks and compared them
ta the random topolagy model as a means of validation of the simulation process, 2 dubious
procedure given the known departures of real networks from the moael.

Although both of these methods of random network generation are found to yield results in
broad agreement with the random topology model, they clearly differ from it in srincisle.
The requirement that adjacent basins pack together on the lattice ensures that basins are
not statistically independent, and therefore that all topologies are not equally likely.
The use of a topographic surface to obtain the stream networks imposes additional con-
straints of smoothness and continuity of elevation. Although Seginer obtained nis surfaces
by generating independent elevatiogns in each cell, both real and fBm surfaces are compara-
tively smooth, ensuring strong interdependence between flow directions in adjacent cells.

The effect of such constraints on the random topology model is unknown, and is unlikely to
yield to mathematical analysis. The approach proposed in this paper is to analyze stream
networks obtained from fBm surfaces. [f broad agreement is found with the random topology
model, the conclusion will be that the effects of the constraints are minimal. ©On tre
other hand if deviations are found from the random topology model, it will be possible to
compare these to the deviations observed in real networks. And if the :eviations ire con-
sistent, the ifaplication wili be that they result from {opograpnical sonstraints on the
operation of the TRCN model on real surfaces, rather than from any geocmorphologic
mechanism,

SIMULATIONS

Arrays of 253 by 258 elevations were generated using the method described by Mandelbrot
(13) in which an initially flat surface is successively distorted by displacement along
randomly located 'fault' 1lines. Mandelbrot (14) has argued that the more commonly used
method described by Fournier et al. (15) is statistically incorrect. The profile of the
displacement on either side of each 'fault' can be adjusted to produce surfaces with
differant values of the parameter H, which ranges from U to 1. A low H yields a rugged
surface witn relatively high variance lacally; a hign H corresponds to a smooth surface
with little local variance but with significant drift. H was varied frem 3 to .7 in
steps of .1, and 1000 'faults' were generated for each surface.

Each cell was then assigned an integer indicating flow direction according to tha following
rules. First, all boraer cells were designatea 3inks {direction 8). Second, 7 at least
one of a cell's four neighbours was strictly lower in elevation, the diraction was toward
the neignbour of lowest elevation. Finally all other cells were designated sinks. This
classification is similar to that used by 0'Callaghan and Mark (18) {but compare {17))
except that it is based on four rather than eight neighbours and only four directions are
allowed, The resulting frequencies of directions and sinks varied with H (Table 1),
particularly on high H surfaces where frequencies also varied markedly with direction
because of the innerent smoothress in the surface, although the direction of bias is of
course random. Three replications were made of the H=0.7 simulation for comparison and
becayse this value of H was thought by Mandelbrat (13) to give the closest rasemnlance %o
real landscapes.

Table 1

Frequencies of Sinks and Flow Directions

0 (Sink) 1 (North) . 2 (East) 3 {South} 4 {dest)
.3 7319 14373 14802 14316 14726
4 5902 14051 15423 15779 14381
.5 4536 13775 15524 17255 14446
.6 2521 15007 9096 14761 24151
Ja 462 46343 5232 999 12500
Jb 1016 4492 22112 30131 7785
e 1199 8396 17193 27430 11318
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Next, border cells were discarded and all drainage basins were extracted from the remaining
256 by 256 array for each surface. The algorithm processed each array row by row. o:.
encountering a sink, all drainage networks discharging into that sink were identified in
the form of binary strings (3). In our implementation of the binary string concept the
pasin is traversed from the outlet from left to right. A zero is coded the first time each
interior link is traversed (equivalent to coding a zero the first time a junction is
reached) and a one is coded each time an exterior link is encountered. MNo attempt was made
to apply a criterion for channel development such as that used by 0'Callaghan and Mark
(16): exactly one channel was assumed to flow from every cell in the direction inferred
from the cell's slope. Because a square array was used, there were frequent instances of
four-valent junctions, whereas all theoretical work on lake-free channel networks has
assumed that all junctions are three-valent; this problem was resolved by creating two
three-valent junctions, the incoming stream immediately clockwise of the outgoing stream
seing assumed to join downstream of the other two. In terms of the binary coding scheme,
which proceeds from left to right around the tree, this process of breaking four-valent
junctions always yields ...010... rather than .00...1.

A1l analyses of the basins obtained in this way were carried out by processing n:m‘cmamw«
strings. The streams in a basin can be classified according to the Strahler ordering
system by replacing all instances of Uxx by x+*_ and all *smnm:nmm.oﬁ Oxy, x not equal to
y, by the greater of x and y. Each time the first of these conditions occurs the ﬁo:qnws
for streams of order x+l is incremented. This process must terminate with a single digit
equal to the order of the basin.

ANALYSIS

In the infinite TRCN model the probability that a randomiy chosen basin or m:acmm*a is of
order w is 1/2%. The relative abundances of basins on the fBm surfaces are shown in

Table 2.
Table 2
Abundances of Basins by Order
H 1 2 3 4 S Total
W3 14107 1948 648 1 ] 19704
.4 10596 4512 794 5 Q 15907
.5 7474 3590 822 115 0 11901
R 3902 2139 743 40 1 6825
JJa 622 379 180 51 3 1240
Jb 1543 801 39 55 4 2794
Tc 1796 998 466 70 0 3330

The model predicts the number of order w+l basins to be half the number of order w basins,
and this is clearly most nearly true of the lower orders of the high-H surfaces. All
surfaces snow severe truncation of the high orders, The very rugged topography and high
incidence of sinks on the low H surfaces have clearly led to an overabundance of first
order basins.

The probability that a randomly chosen stream in an infinite TRCN has order w is 3/4%,
Again we find better fit to the model on the smoother surfaces of high H, and an over-
abundance of low-order streams particularly on low H surfaces. To fit the model the number
of streams of order w+l in the following table should be one quarter of the number of
streams of order w, for each surface.

Table 3

Abundances of Streams by Order

H 1 2 3 4 5 Total
3 32016 6318 650 1 0 38985
4 29038 6264 804 S 0 36111
.5 25365 5512 852 15 1] 31744
.6 19888 4214 833 42 1 24978
J7a 9086 1583 365 67 8 11109
.7b 13489 2431 556 65 4 16595
.7c 14168 2707 624 70 U 17569
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Analysis of full basin topologies is limited by the explosive growth in the aumber of =
possible distinct topologies as the magnitude of the basin (number of first order streams "
M) increases. In this study we have limited the analysis to basins of magnitude 5, far ’

which there are 14 possible topologies. For convenience we will refer to each basin by the 5

octal representation of its binary string: thus for example the basin represented by th
string 0101011, which is one of the five topologies for magnitude 4 basins, will be
referred to as basin 53. The four others are 17, 27, 33 and 47, Basins can be counted
very quickly by using this octal representation (or its decimal equivalent) as a hash code,

e

The abundances of the five possible topologies for magnitude 4 basins are shown in Table ¢
below.

Table 4

Abundances of Topologies for Magnitude 4 Basins

H 17 27 33 47 53 Total
3 38 72 165 211 245 731
K 60 96 169 218 209 752
.5 71 88 112 163 162 596
.6 46 77 66 86 84 359
J7a 7 13 7 11 17 55
.7b 25 26 25 30 36 142
Je 21 29 29 34 50 163

In the infinite TRCN model the five topologies are equiprobable, but this is clearly not
true of the simulations. Unfortunately the method of breaking four-valent junctions
creates a consistent bias., Three first-order streams meeting at a junction are always
recoded to (01011 rather than 00111, and hence of the two possible topolaogies for magnitude
3 basins, 13 is observed much more frequently than 7. In the case of magnitude 4 basins
the bias favours 53, 47 and 27 over 17, as is evident in the table above.

We can remove the effect of bias by randomizing the splitting of four-valent junctions, or
by aggregating topologies to ambilateral classes. Two topologies are said to be of the
same ambilateral class if one can be obtained from the other by a process of switching the
two incoming subbasins at one or more junctions, in other words by ignoring left~right
distinctions. Smart (18) first suggested aggregating in this way as a means of reducing
the number of possible topologies for high magnitude basins. The algorithm to identify a
basin's ambilateral class operates on the binary string representation. Each zero in a
valid string represents a junction, and is followed by two blocks of binary code represent-
ing the two subbasins incident at that junction, Each block of code is evaluated as an
octal (or decimal) number, and the order of the two blocks is reversed if necessary sa that
the first block has a lower numerical value than the second. For example, consider the
string 00111 (basin 7, magnitude 3). The first zero is followed by the blocks 0ll and 1,
with numerical values 3 and 1 respectively. Since the first is greater than the second,
they are reversed to give the string Ql011, basin 13, which is the only ambilateral class
faor magnitude 3. lIn this way the five topologically distinct magnitude 4 basins recode to
two ambilateral classes, 0101011, basin 53, and 0011011, basin 33. The relative abundances
of ambilateral classes should not be affected by the method used to break up four-valent
junctions.

Although Werner and Smart (19) give recursive formulae for the number of ambilateral
ciasses for each magnitude, the number of topologies corresponding to each must be enumer-
ated by inspection. Table 5 gives the observed and expected abundances for magnitudes 4,
5, 6 and 7 basing for surface H=,3. The results for the other surfaces are similar.

The Null Hypothesis represented by the infinite TRCN model is rejected at the .10 Tevel for
M=4 and at the .05 level for all other magnitudes for this surface, and similar patterns
are observed for the other surfaces. In each case the more probable ambijlateral classes
tend to be more abundant than expected, and the less probable classes to be less abundant.
High relative probabilities occur in ambilateral classes with relatively large numbers of
asymmetrical junctions. For example, in the string 0011011 the two blocks following the
first zero are identical, so the corresponding ambilateral class has only one member,
whereas the string 0L01011, which has the same magnitude, has three other members of the
same class (0100111, 0010111 and 0001111) because two of its zeroes now represent
asymmetrical junctions.

At any symmetrical junction the downstream 1ink is of order one higher than both of the
incoming links. Thus in general basins with a large percentage of symmetrical junctions
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Table 5

Abundances of Ambilateral Classes, Surface H=.3

Magnitude Class Observed Probability Expected p(TS)
4 53 566 4/5 546 2/4
33 165 1/5 185 0/4

5 - 253 258 8/14 230 3/5
153 110 4/14 115 1/5

233 35 2/14 58 1/5

[ 1253 82 16/42 73.5 4/6
653 39 8742 36.7 2/6

1153 23 8/42 36.7 2/6

553 24 4/42 18.3 2/6

1233 21 4742 18.3 2/6

633 4 2/82 9.1 0/6

7 5253 40 32/132 30.8 b1
3253 20 16/132 15.4 377

4653 10 167132 15.4 3/7

2653 19 16/132 15.4 3/7

5153 20 16/132 15.4 377

3153 4 8/132 7.7 177

4553 5 8/132 7.7 3/7

5233 5 8/132 1.7 3/7

3233 2 4/132 3.8 1/7

4633 i} 47132 3.8 177

2633 2 47132 3.8 177

tend to be of higher order, everything else being equal. The table confirms a tendency for
basing of high order to have few ambilateral classes and to be less abundant than expected,
while basins of low order, ceteris paribus, tend to be overabundant.

A1l Ffirst order streams can be placed into two classes depending on zamn:ma they join
another first order stream or a stream of higher order (another exterior Tink or an
interior link respectively). The first type are am:0ﬁmﬂum for mocﬂnm.“dzxm and the second
TS for tributary source tinks. S links must by definition nmnauzmnm in m«:gmnqmnm_
junctions, So we expect a correlation between the proportion of links in an ambilateral )
class which are TS and the prabability of that class in the qmnz model. The percent TS is
shown in Table b and confirms an overabundance of basins zmn: :dmz percentages .
Furthermore the highest percentages of TS links are found in basins zdnJ one long second
order stream, with all but two of the first order streams spaced along its length, with a
binary representation of the form n{01)011. It would appear ,_xmmw that such basins would
be relatively elongated under a wide range of geometrical assumptions,

To test these hypotheses more directly the percentage of TS MAaxm in mwn:.wmmds was
tabulated by basin magnitude for each surface. Pairs of S links are readily _nwaﬁ_mdma by
the occurrence of ..0Ll.. in the binary representation; all other ones are TS links. In
addition the bifurcation ratio was estimated for each basin by two methods, the (w-1)th
root of the number of first order streams (BU), and the ratio of first order to second
order streams {Bl). Table 6 shows the associated mnmnimamnm'moﬂ surface H=.7¢ tabulated by
basin magnitude up to M=20; again, the other surfaces show similar results.

In Table 6 the values of p{TS), or the probability that a randomly chosen first order
stream is TS in the infinite TRCN model, is given by (M~2)/(2M-3) (20). It is easy to
show that the limit of this ratio as M tends to infinity must be 1/2, as follows. For an
infinite basin any binary digit is statistically independent of its :mdmaaocqm in the
string and is equally Tikely to be a zero or a one. There are eight m@:dnnovmv_m .
combinations for the two digits in front of a one and the digit mod_oz.qu' four ow which
dictate that the embedded one be an S link, and the remaining four require a TS 1ink:

0010 - 75 001l - S 0110 -5 0111 - §
1010 -~ TS 1011 - § 1110 - TS 1111 - T8

However, Table 6 shows clearly that the percentage of TS Tinks observed is much more than
expected.
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Table 6

Bifurcation and %TS by Basin Magnitude, Surface H=.7¢

M n TS p(Ts) 80 B1

3 4912 33.3 .333 3.00 3.00
4 2798 39.8 . 400 3.59 3.59
5 1686 46,7 429 4,08 4.17
5 1645 49,7 L4446 4,25 4,51
7 53.1 L455 2,43 4,87
3 52.8 .462 4.21 4.37
9 55,9 467 3,35 5,20
10 55.8 471 4,36 5.38
11 8.7 472 4.49 5.62
12 57.9 476 4,31 5.50
13 59.9 478 4,39 5.75
14 60.2 .480 .79 5.99
15 60.0 .482 4,12 5.64
16 61.4 .483 4,60 6.05
17 63.3 484 1.03 5.99
18 61.3 .485 4.63 6.03
19 64.3 .486 418 5.94
20 66.2 L4187 4,23 5.48

CONCLUSICHY .

The simulatsg Jrainage networks obtained from fBm surfaces differ from the predictions of

the infinite TRCH mode! in several ways, and in many of hese there is agreement with
previousiy observed deviations tetween the random model and real networks. Hore
specificaily, and foilowing Abranams (8, p.164), it is obserwed that:

1} The percentage of 75 tinks exceeds irodel aredictions, particularly in hign-magnitude

basins.

2) The excess of TS links increases with magnitude.

3} For both evaluations of the difurcation ratio, there is a tendency for large basins to

2xceed the gradictions af the model.

4} Bifurcation ratios increase with

3} 81 genarally exczeds 30,

Abrahams notes further inconsistencies involving asymmetry, hut for the reasons noted above
the method of obtaining networks rrom simulated surfaces aoes not allow for the analysis of

asymmetry.

We conclude that many of the ways in which real drainage net#orks have been observed to
aiffer from the predictions of the ranaom topology model are replicated in these
simulations. Because the model does not consider the constraints imposed on network

topology by surface smoothness and by the need to pack basins together, it may surfer from
basic inadequacies whicn prevent it from fully describing the appropriate Null Hypothesis
for stream netwarks. As a result many properties of observed networks may be incarrectly

interpreted as having geomorphological significance.

it would te unwise to argue at this stage that the inrinite TRCH model be replaced by fBm
similations as a norm for geomorpholegical interprecation, Althougn the latter reproduce
several observed inconsistencies, we nave already noted that the presence of abundant pits

is incompatible with most real terrain. In addition several aof the assumptions made in
deriving networks are inconsistent with reality, including the lack of a criterion to

distinguisn between overiand and channel flow. The model clearly needs refinement, and it

is possible that such refinement will remove the agreement between its pradictions and
reality, in other woras demonstrating that such agreement is merely coincidental.

1t would be possible to deal with the problem of pits by treating them as lakes. Although

a lake-rich network can be reduced to a three-valent planted tree, to do so would be to

jgnore the constraints imposed by the lakes on the possible topologies. Alternatively one
could treat the network as lake rich using the ideas developed by Mark and Goodchitd (21)
and subsequently analyzed by Mark (22) and Mark and Averack {23). Finally various models
lakes (compare for example {12,24)}).

of erosion could be used to reduce the abundance of
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