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ABSTRACT

The performance of many algorithms in spatial data processing depends
on the way in which spatial entities are ordered. The paper defines a
general class of problems in which the objective is to preserve as far
as postible the spatial relationships present in two dimensions.
Applied to a raster, the problem leads to the N or Morton ordering and
a new Pi~order is proposed based on a familiar Peano curve. An algo-
rithm is given for defining Pi-order. These are compared empirically
and analytically to the conventional row ordering, and a simple
varianz, using a number of standard images and using a class of indices
which includes the spatial autocorrelation measures, The empirical
results support Pi-order but the analytic results are mixed.
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INTRODUCTION

Consider a set of spatial entities which are to be stored and processed
in a spatial data system. In this paper the entities considered are
the cells of 'a square raster, but they might equally be a set of non-
overlapping polygons representing census tracts or counties. The order
in which the entities are stored and processed is critical in many
types of queries and sorting operations. The purpose of this paper is
to consider the implications of such an order for storage, manipulation
and output. The paper discusses various ways of defining an optimum
ordering, indices for evaluating specific orderings, and algorithms for
transfocrming one order into another.

Let the number of entities be n, and let ri denote the position, or
rank, of entity i in the ordering. The vector R with elements Ty,
i=l,n must be a permutation of the integers 1 through n, and clearly
al such permutations are possible. Now consider a square n by n matrix
W whose elements zwu.wnwwu,uuw.s represent the proximities or spatial
relationships between each pair of entities. For example we might let
wij = 1. if i and j are adjacent or share a common boundary, otherwise
wij = O0: Or wij might be the length of common boundary or a decreasing
function of the distance between the entities' respective centroids.

We can +o£ define a class of indices
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as measures of the spatial structure present in the ordering R. If f

is an increasing function of differences, such as (ry - nuvm or

_ﬂw - nu_. then S can be said to measure the extent to which the one-—
dimensicnal ordering R preserves or destroys the two-dimensional spatial
relationships present in the set of entities. Examples are given in the
paper of cases where it is desirable to optimize $ in order to preserve
spatial relationships.
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Indices having the same general structure are well known in the area of
spatial autocorrelation. Both the Geary and Moran indices have this
general form (Cliff and Ord, 1973), in each case normalized to produce
a measure vwhich is comparable across data sets of different n and W.

As simplified for the case where the entities' attributes are permuted
integers, they are respectively:
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A low valye of ¢ is obtained by ensuring that two entities in close
proximity to each other (high wjj) are assigned similar integers. Thus
we would minimize ¢ in order to wmmn preserve the spatial relationships
present in the two-dimensional arrangement. Similarly maximizing I
will ensure a strong correlation between the integers assigned to
neighbouring entities. Note that different solutious are expected as
the two indices are not complementary (I + ¢ is not comstant) except in
special cases, for example when the weights are standardized such that
Zw,, =1 for all 1.
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The problem of optimizing I, ¢ or more generally S falls into the
general class of quadratic assignment first mentioned by Koopmans and
Beckmann (1957). In this paper we consider one version of the problem
which is immediately applicable to automated cartography: the questiom
of the optimal method of storing raster data.

RASTER STORAGE

There has been considerable recent interest in the structuring of
raster data, since options like quad-trees offer considerable advantage
in searching and processing operations (see for example Klinger and
Dyer, 1976, Samet, 1981). A given raster data set can occupy very
different amounts of storage depending on how it is structured, particu-
larly if run-length encoding is used and if the domain of the data is
limited. The traditional ordering of a raster, row by row from the
upper left corner (Figure la), may be less efficient than other
orderings because of its property of rapidly traversing the image from
one side to the other. An early and somewhat obscure paper by Morton
(1966) described the use of a particular raster ordering in processing
the frames of images in the Canada Geographic Information System
(Figure lc). Cells which are close together in space appear to be
placed in similar positions in the sequence tc a greater eéxtent in the
Morton ordering than in the conventional one. Recent papers by Tropi
and Herzog (1981) and others have revived interest in the Mortom
ordering, which is recogniZed as an example of a space~filling or Peano
curve. Any real image is likely to show strong spatial autocorrelation,
in other words two vw%mwm which are close together on the image are
more likely to have similar data attributes than two pixels which are
further apart. So we would expect a raster coded in Morton order to
have greater average run length, and thus smaller volume, than one
coded in conventional order. ,

Although Morton order has this intuitive advantage,: only one move in
two in the sequence is to a cell which is a rook's-case or 4-neighbour,
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and as the raster increases in size the length of the longest move
increases as well. 1In a raster of 2N by 2N cells the longest move is
one column and 2N - 1 rows (or vice versa). However another member of
the Peano family always has the property of moving to a 4-neighbour
cell. We will refer to this curve as Pi-order (Figure 1d) and the
Morton sequence as N-order in recognition of the basic 3-step moves
from which the curves are comstructed. Intuitively we would expect
Pi-order to improve on the efficiency of both row order and N-order.
The comparisons which follow will also include a revision of row-order
in which every even row is reversed (Figure 1b). This will be referred
to as row-prime order, and also has the property that each move is to
a 4-neighbour.

i

The definition of Pi-order is somewhat more complex than the others.
The construction of the curve can be expressed as an algorithm for
returning the row number and column number (both between 0 and 2N - 1)
of a Pi-ordered cell (numbered between 0 and 22N - 1) in a 2N by 2N
array.: The algorithm is as follows:

1) Express the Pi-order number to base 4 as a vector of digits

P with elements pj,i=1,N, 1 being the most significant

2) Q=P

3) 1«1
4) 1If 55 =0, then for j = 4 + 1 to N do:
if qj = 3 or qj = 1 then qj = 4 - gj
end
If vi = 3, then for j =1 +1 to N do:

I if qj = 0 or qj = 2 then qj = 2 ~ qj
end
5) i=1+1, If i< N go to step 4.
6) Let'X and Y be binary representations of the column and row number.
Thelr elements are obtained from the following table:

9y *5 Yy
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The four orderings will now be compared in two ways: empirically, in
terms of the volume of data generated for standard images, and analyti-
cally in terms of the mean difference in sequence between spatially
adjacent cells through the performance of each order against S-indices.

EMPIRICAL COMPARISON

Clearly there is no standard image which can be used to obtain results
which are totally generalizable. However several authors (Mandelbrot,
1982, Burrough, 1981, Goodchild, 1982) have argued that surfaces gener-
ated by fractional Brownian processes show substantial resemblance to
a variety of real phenomena including terrain, to the extent that they
support some limited degree of generalization. The surfaces each have
the property that variance is a power function of distance, that is
2 2

Elz(x) - z(x + &)]° = |q|*} *)
where x and x + d are two points a distance [d| apart, z is the eleva-
tion of the surface, E denotes the statistical expectation and
0 € H& 1 is a parameter. Surfaces with low H are locally rugged but

i
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Figure 1: The Four Standard Orders

Ltyuuu gy |

(a) Row Order . (b) Row-prime Order

-

(e) N {Morton) Order (d) Pi-order

2: Example image Created by Contouring a Fractional

igure .
g Brownian Surface (H=0.5) at the Mean Elevation
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Table 2 shows the amalytical results obtained for Sy and S; for cellu-
lar arrays of 2N by 2N cells. The expression for S; for Pi-order was
obtained empirically rather than analytically and must be regarded as
an estimate only.

show little general trend, while surfaces with high H are locally
smooth, but show a strong general ‘'drift'.

Nine surfaces were generated using values of H ranging from 0.1 to 0.9
in steps of 0.1. Each was then converted to a binary image by taking
the mean elevation and coding each cell as either below (black) or
above (white). An example is shown in Figure 2.

As N becomes large the equations can be compared through the coeffi-
cients of their dominant terms alone. It is clear that row, nozw and
N are equal and superior to Pi against Sj, and that the conventional
The results are shown in Table 1 in terms of the number of records row order is best for large N against the Sy criterion, since it has a
required to code the image for each of the four orders. Since the mBmHHmn.nommmmnwmsn than rowl-order for Nmz. and both N and Pi-order
maximum run length in a 28 by 2N ipage is 22N, each rum of black or are dominated by terms in 23N, Pi-order seems worst on both criteria.

white can be coded as a record of 2N bits. At H = 0.0 each elevation
is statistically independent so the number of runs can be obtained from .

TABLE 2: Analytical résults for S; and Sy for the four orders

a standard result, provided the numbers of black and white cells are s s i
equal. : - 1 2

g . 1 N ’ 2N
For locally smooth surfaces (high H) Pi~ and row - orders have a clear Row (27 +1)/2 277 + 1)/2
advantage, with a roughly 60% saving in storage over row-order and a N proy
25% saving over N-order. At low H Pi-order is still the most efficient, Row-prime 27+ 1)/2 (2 + 1)/3
but the advantage is small, and N-order appears less efficient than the N 5 N 2N N
conventional row-order. N (Morton) 2"+ 1)/2 5E12-27 + 2.2 + 16,2 + 7]

2
Pi (51.2°% + 16.2% + 161/184.2"7  0.195 2°¥ + Lower order

TABLE 1: Data volume for binary images derived from
fractional Brownian surfaces m terms

1 Order OPTIMIZATION }
H Rov Row N Ri :
In this section we consider the possibility of finding orders which
0.9 179 116 143 108 optimize S-indices. Branch and bound (see for example Lawler, 1963,
0.8 155 92 123 86 Pierce and Crowston, 1971) and a natural selection heuristic (Francis
) 0.7 168 105 136 85 and White, 1974, p.377) were both applied to optimize the Geary and
Contour 0.6 169 106 151 96 Moran indices to find orders which best preserve spatial relationships.
at 0.5 488 469 580 473 The exact method was used for N=2 and the heuristie for N > 2,
meai 0.4 398 364 462 378
0.3 992 972 1050 980 Minimizing the Geary index for N=2 produced two solutions with the same
0.2 1477 1461 1539 1443 optimm of ¢ = 0.188, The first was row-order, which is consistent
. 0.1 1796 1779 1882 1707 : with the results obtained in Table 2, since the Geary index is propor-
i tional to S9. Maximizing Moran for N=2 also gave two distinct solutionms,
Contour : with I = 0.729, but neither was the same on any of the four standard
at 0.0 2047 2047 2047 2047 ! orders. For N=3 and N=4 the heuristic algorithm obtained solutions for
both Moran and Geary which were substantially better than any of the

median
; four standard orders. We conclude that while the four orders behave

relatively well, none is an optimal solution. A summary of the per-
formance of the four orders is shown in Table 3, and it is clear that
row-order is the best against the Geary criterion and N-order against
the Moran. :

ANALYTICAL COMPARISON

It was argued in the first section that the difference between the
positicn in the sequence assigned to one cell and the positions
assignsd to its neighbours was a measure of the extent to which the
sequence preserved the spatial relationships in the two-dimensional
wﬂﬁmbmmamnn of cells, In this section we consider two S-indices for
each of the four orders discussed above:

CONCLUSIONS

Four raster orderings,'including the traditional row order, the Morton
. or N-order, and a new order based on a Peano space-filling curve, have
(5) : been evaluated against the criterion of preserving spatial relation~
ships. Empirically it appears that Pi-order performs best against

S, = Mwsa_n»

i
: ) i fractional Brownian surfaces of varying H, and these are arguably

and mN =L fw uﬁﬂw -r)°/r I w5 s (6) ! representative of a broad set of real images. Analytically, it appears

ij Iy 3 J : that cases can be made for row-order, rowl-order and N-order, but that

none of the four orders optimize simple measures of efficiency.

S] can be interpreted as the mean difference in ordered positions )
between neighbouring cells and Sy as the mean square differemce. Each
element vij is set to 1 if j 1s a 4-neighbour of i, otherwise O.

404 405




TABLE 3;: Geary and Moran statistics for the four standard orders Mandelbrot, B.B. 1982. The Fractal Geometry of Nature, Freeman
- San Francisco. '
N xow row—prime N(Morton) Pi
2 0.188 0.243 0.202 0.368 Hmmmmmcmwn MMM.mmmcmmmwumwﬁmmpmmmwmmmmmwSn data base, and a new
Geary 3 0.047 0.062 0.074 0.165 Plerce, J.F. and Crowston, W.B. 1971, Tree-search algorithms for the
: 4 0.012 0.016 0.033 0.078 MMWQMWMMW assigoment problem: Naval Research Logistics Quarterly, 18,
2 0.667 0.608 0.706 0.545 ) wmmmnmnwmmWMMWmnwaowpwomwnss Mowpnoadmunwum NNMnmnm into quadtrees:
Moran 3 0.857 0.842 0.881 0.801 pp. 93-55. attem Snalysls and Machine Incelligence, 3,
4 0.933 0.929 0.946 0.907 X Tropf, H, and Herzog, J. 1981, Multidimensional range search in

dynamically balanced trees: Angewandte Informatik, 2, pp. 71-77.
The general framework and measures used in this paper can be applied in . -

a number of other areas. For example the order of U.S5. states which
minimizes 8y or S; would be an appropriate order for tabulating statis-
tical data, as it would preserve the spatial relationships on the map

to the greatest possible extent. Different definitions of W could be

used to preserve either local relationships within regions, or general
relationships within the nation as a whole. Maximizing S; or S; has

the effect of assigning neighbouring entities maximally different
positions in the sequence. Such a strategy would be reasonable in the ;
assignment of telephone area codes as it would ensure very different,

and therefore hard to confuse, codes to neighbouring zones. Finally

one might regard the design of a dart board as being a problem in
assigning the integers 1 through 20 to maximize an S index.
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