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INTRODUCTION

For several decades, social scientists have been concerned with the systematic
analysis of voting processes. Majority rule, which is widely institutionalized in
Western societies, has been the subject of numerous analytical and critical studies.
The fact that majority rule fails to generate an equilibrium social choice under
certain preference configurations has long been known. In the absence of equilib-
rium, majority voting is subject to intransitivities, in which the eventual choice
among three or more alternatives depends on the order upon which they are
voted. Social choice theorists have therefore devoted considerable attention to
the analysis of intransitivities in majority voting (Sen 1977).

Three recent papers have been concerned with majority voting in the location
of salutary facilities, for which it is assumed that each consumer wishes to be
located as close to the facility as possible. These papers have assumed spatially
dispersed demand, but instead of locating a facility to minimize total distance, or
to minimize the distance to the farthest point, they have assumed that the individ-
uals requiring the facility will vote over alternative locations. Rushton, Mc-
Lafferty, and Ghosh (1981) showed in a simulation that majority voting will in
general not lead to the same solution as the more conventional criteria; further-
more, they showed that intransitivities will occur among triples of possible loca-
tions even when all voters share the same preference rules. Hansen and Thisse
(1981) and Wendell and McKelvey (1981) also assumed that individuals would
always prefer a closer location to a more distant one. Both concentrated on the
conditions under which a location that would be preferred to all other locations by
a majority of voters could be found. Hansen and Thisse called such a point a
Condorcet point, in contrast to the Weber (minimum total distance) and Rawls
(minimum maximum distance) points. Wendell and McKelvey showed the iso-
morphism between voting and the behavior of an entrepreneur seeking a location
that would be closer than any other location to a majority of consumers, and they
cast their analysis as a search for competitive equilibrium. They distinguished
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between a set of locations giving strong equilibrium (G,) and a set giving only
weak equilibrium (G,): for strong equilibrium a location must be preferred to all
other potential locations by a strict majority, whereas weak equilibrium - exists
when the preferred location defeats or ties all alternatives.

Both Hansen and Thisse (1981) and Wendell and McKelvey (1981) were con-
cerned with the cxistence of the Condorcet point, or the emptiness or nonempti-
ness of the sets G, and G,. Hansen and Thisse showed that a Condorcet point
always exists on a trée network. Wendell and McKelvey showed that G, and G,.
will be nonempty only under certain conditions of symmetry, which can be stated
both for network (discrete space) and continuous space problems. In the continu-
ous space case, the conditions can be stated as follows. If the number of voters-is
even, then it must be possible to find a pairing of all individuals such that when
their locations are connected by straight lines, all lines pass through a common
point that lies between the two individuals in each pair. If the number is odd, the
unpaired individual must be at the intersection. In summary, it seems that given
the general conditions likely to exist in real-world problems, both G, and G,, can
be expected to be empty. Wendell and McKelvey see this situation as “rather
bleak.” Hansen and Thisse suggest that it would be logical to move to criteria that
are less demanding than the strict majority (Kramer 1973).

Given the improbability of a simple solution, the purpose of the present paper
is to examine some of the more general aspects of the Condorcet location problem.
Of particular concern are the potential conditions under which one location is
preferred to another by majority rule. These conditions are used to determine
those triples of locations that give rise to intransitivity. Results are obtained in
continuous Euclidean space, first for the traditional Weber triangle and then:for
the general case of N weighted demand points.

UNWEIGHTED TRIANGLE

Consider first the case of three unweighted points. A Condorcet point must
exist only if the three points are collinear (Black 1948). However, when the three
points are not collinear, equilibrium exists only under the conditions developed
below. The general problem is illustrated in Figure 1. If point P is one of two
potential facility sites, a second site Q will defeat P iff Q is located within the
shaded portions of Figure la, defined by arcs of circles drawn centered on the
three points; otherwise P will defeat Q. The size of the shaded arc varies system-
atically with the location of P, but would be zero only if P were a Condorcet point.
In general it is impossible to find a P that cannot be defeated by some Q.

The area that dominates P within the triangle is shown in Figure la by the
symbols a, b, and c. Let R4 be the area of the segment of a circle of radius AP
centered on A and defined by the sides AB and AC. Then

Ri=b+c+d ’ (1)
Rg=c+a+e : @)
Re=a+b+f. | B

Summing, we have an expression for the shaded area within the triangle:

S=RA+RB+RC' ; (4)
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F1¢. 1. Definitions of Terms

Since the sides of the triangle bisect each of the three “leaves” of the shaded
area in Figure la, the total shaded area is given by

If, on the other hand, P lies within triangle ABC but outside the dashed lines
shown in Figure 1b, which are arcs of circles centered on a vertex and tangential
to the opposite edge, then less than half of the appropriate leaf will lie inside the
triangle. However, it is easy to show that as long as P lies inside the triangle, the
expression for S given in equation (3) is still valid.

We might now ask where P should be located within the triangle so as to
minimize the area of dominance S. In other words, given that no Condorcet point,
for which § = 0, exists, which is the location that is least subject to defeat as
measured by the area of domination? Let (P, Py), (a;, ay), (b, by), and (¢, ¢,) be
the coordinates of points P, A, B, and C respectively. Then, the minimum point
can be found by defining the components of equation (5) in terms of these coor-
dinates using the Pythagorean theorem and the familiar geometric conditions
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characteristic of triangles. Taking the derivatives of § with respect.to P, and P,
show that a minimum occurs at s

Py= (@ + bi/g+ eV s (ﬁ)
P?_ = ((I:ZL‘,\ + I)QLB + CQL(;)/’TT N . ’ (7) ;

where £ 4, £5, and £ are the interior angles of the triangle.

Denote the location of the minimum value of S, whose coordinates are defined
by equations (6) and (7), by P. The properties of P can be seen with reference to
Figure 1b. It can be shown that P divides CW in the ratio ,

wpP Lo
A Il 8
Similarly,
VP _ 4y )
pB 1 LB
and
P La (10)
PA ™ — AA ’

Furthermore, AW/WB = £ 4/4 4, BUUC = £ /g, and CVIVA = £ /L. From
these conditions, P always lies strictly within the triangle unless at least one of
La, Ly, OF L is zero. P clearly coincides with the Condorcet point when it exists,
but it coincides with the Weber point only in the special case of an equilateral
triangle. Further contrasts between the behavior of P and the Weber point are
indicated by comparison with the results obtained by Tellier (1972). To compare
the properties of P with that of the centroid, which minimizes the sum AP?> + BP?
+ CP2, note that the centroid divides AU in the ratio of 2:1, and similarly for BV
and CW.

The special case of an isosceles triangle illustrates the divergence between the
Condorcet and Weber points and the different properties associated with each
point. Substituting the characteristics of an isosceles triangle into equations (6)
and (7) as before, the relationship between P,, or the height of P above the base,
and the height of triangle ABC, or CW, is given by

P, = [w — 2 tan (CW/AW)|CW/r . (11)

In the range 0 < CW < oo, this is a monotonically increasing function. By contrast,
for the Weber point, P, = AW/,/3. This indicates that for the Weber point, P, is .
independent of CW. For the centroid, P, = CW/3. .

WEIGHTED TRIANGLE

Now consider the case of the three points A, B, and C, with weights wi, Wy,
and w; respectively. The critical areas are still those shown by shading in F igure
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la. However, the conditions for dominance in the six parts of the triangle are now
as follows. P dominates points in @ if w, > w, + w,, and similarly for b and ¢; P
dominates points in d if w; < w, + wy, and similarly for ¢ and f. Note that if
cqualities are considered, it is possible to distinguish weak dominance in which P
is at least as preferred as Q. For example, P would be weakly dominant over a Q
located in a if w;, = w, + w;. Since at most one of the first three conditions can
be true, it follows that at most one of 4, b, and ¢ can be dominated, and that at
least two of d, ¢, and f must be dominated. Suppose that w, = w, + w,, and § is
given by b + ¢ + d. Clearly, S is minimized in this case by location at A. If the
weights are distributed such that one point has more than half the total weight, a
Condorcet point exists and P is at that point. However, if no point has more than
half of the total, the solution is as in the case of unweighted points and is unaf-
fected by the values of w,, w,, and w,.

THE GENERAL CASE

This section considers the general case of N weighted points. Since the perpen-
dicular bisector of the line segment connecting two points P and Q divides places
closer to P from those closer to Q, it follows that P dominates Q iff the majority of
the weight is found on P’ side of the perpendicular bisector of PQ. It follows that
for P to dominate all other potential locations and be a Condorcet point, any line
drawn through P must divide the weight in that way. Wendell and McKelvey
(1981) use the term “total median” to describe a point with this property.

An example of the area dominating a location P is shown in Figure 2, which is
based on five equally weighted points. The area of dominance consists of the
intersection of circles centered on each point and passing through P. When an
intersection occurs between circles centered about a set of points whose combined
weights exceed half of the total weight, locations within this intersection all dom-
inate P. When one point has more than half of the total weight, the area of
dominance will be the circle centered on that point.

Now let P, Q, and R be a triple of alternative locations. Intransitivity will occur
when P dominates Q, Q dominates R, and R dominates P, or the reverse. The
conditions that lead to intransitivity depend on the distribution of weights relative
to the perpendicular bisectors of PQ, QR, and RP. Consider the triangle PQR
illustrated in Figure 3. Since PQ, QR, and RP are all chords of the circle circum-

Fic. 2. Example of Dominance in the General Case
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scribing the triangle, the three bisectors must meet at a point, labeled T, which
is also the center of the circle, so that TP = TQ = TR, Let the plane be divided
into six sectors defined about T by the three bisectors and labeled a through f, as
shown in Figure 3. Let the symbols a through f denote the total weight of the

points in their respective sectors. Then, the necessary conditions for mtransmvxty
are

P dominates Q impliesthat f +a + b>c +d + ¢ (12)
Q dominates R implies thatb + ¢+ d>e + f+ a ~ (13)
R dominates P implies thatd + e + f>a + b+ c. (14)

Of course, the necessary conditions also hold if all three inequalities are reversed
simultaneously.

Substituting ¢ = 0 and f = 0 into equations (12) through (14) leads to the
conclusion that the triple of points must be transitive if two or more adjacent
sectors have zero weight. It follows that any triangle whose center T lies outside
the convex hull of weighted points must be transitive, because construction of the
perpendicular bisectors must yield two or more adjacent sectors with zero weight.

The conditions described in equations (12) through (14) suggest that intransitiv-
ity is a fairly common occurrence. To gain a general impression of the likelihood

of intransitivity, a simulation experiment was carried out. The conditions reduce
to )

u>ov+w ’ ‘ (15)
o> w4+ u | (16)
w>u+ v ' (17)

or the reverse, whereu = a — d, v = ¢ — f, and w = ¢ — b. If T is a random
point in an infinite plane, with weight uniformly distributed over this plane, then
u, v, and w will be independent random variables with zero mean. In the simu-
lation, u, v, and w were sampled from the Gaussian distribution with zero mean
and unit standard deviation. In 10,000 trials, a total of 887, or 8 87 percent of the
cases, were found to be intransitive.

F16. 3. Conditions for Intransitivity
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CONCLUSIONS

This paper developed general conditions for the intransitivity of triples of poten-
tial salutary facility locations. The results indicate the distinctions between the
Condorcet point, when it exists, and the Weber and Rawls points determined
through the application of conventional locational objectives. When the Condor-
cet point does not exist, the point most likely to dominate all alternatives can be
found; this point also diverges from the Weber and Rawls points. In the triangle,
this point has simple properties, which provide an interesting contrast to those of
the better-known measures of spatial centrality. An avenue for future work would
be to devise an algorithm for finding this point in the general case.

The conditions for intransitivity between three alternative locations reduce to
simple geometrical inequalities, and they suggest that intransitivity may be rela-
tively common. A simulation revealed that nearly 10 percent of randomly selected
cases generated resulted in intransitivity. Further research should be devoted to
consideration of intransitivities in other cases.
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