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I ABSTRACT

A stochastic model applicable to a wide variety of terrains would be useful for a number of
' peasons. The fractional Brownian processes appear to provide such a model. This paper
reviews existing work in this area and makes an extensive empirical test of the model. It
concludes that while departures from the model can be expected in almost any real terrain,
. these do not necessarily detract from its usefulness.

* [NTRODUCTION

) two-dimensional stochastic process capable of simulating a surface with a reasonable
. resemblance to real terrain would be useful for a number of reasons. First, a number of
¥ gctivities including topographic mapping and remote sensing rely on samples of terrain, from
| ¢hich images or statistics can be generated. The sampling intensity clearly affects the
gefulness of the product, and a stochastic model of terrain would allow these effects to
“ pe quantified, so that objective decisions could be made about sample design. Second, such
s stochastic process would provide a null hypothesis to which real terrain could be compared,
in order to isolate aspects of the terrain which result from systematic, geomorphic pro-
cesses. Third, such a process would provide a starting point for simulations of geomorphic
processes, including the action of water, wind, ice and waves. Fourth, the problem of
terrain simulation has generated some interest in the area of low-altitude flying (7), with
gpplications in the defense industry. And finally, Dutton (2) has shown how terraim simula-
tion can be useful in cartographic generalization and its inverse.

¥ vandelbrot (6) has published some striking illustrations of the ability of fractional
prownian processes to resemble certain types of real terrain., The main purpose of this
- paper 1s to make an empirical comparison between this class of stochastic models and a

piece of real terrain, but first it would be useful to review some of their important
properties.

THE FRACTIONAL BROWNIAN PROCESS

Let z2(x) and z(x + d) represent the elevation at two points, x and x + d respectively,
separated by a distance |d| Then consider the expected squared difference between their

elevations. On a fractional Brownlan surface the expected value is & function of distance
alone,

Bl2(0) - 2(x + 917 = 9" w
vhere H is a parameter. The range of H is from O to l1: when it is large, the variability
of the surface is small locally, but rises rapidly with distance, whereas when H is small
the surface shows high local variability but a slow increase at large distances. Fractional
Brownian surfaces can be simulated by a process described by Mandelbrot (5). Figure 1 shows
s series of sample surfaces ranging from H = 0.5 to H = 0.8.. Note that the particular

features of each surface, including any general trend, location of peaks, pits and so on,
are all outcomes of random generation.

Fractional Brownian surfaces are self-similar, so that any part of the surface, when scaled
sppropriately, is indistinguishable from the whole. If landscape were the outcome of such
a process, this would imply that an observer examining any part of it would be unable to
determine the scale. Since there undoubtedly are visual clues in the physical landscape
vhich allow the observer to determine scale, at least within certain limits, it is clear
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counting the number of black-white joins, a plot of the log of the length estimate against

the log of cell size will similarly yield a straight line with a slope of 1-D. Note that
if the surface is smooth and H=1l, then D=1 and length is independent of A or cell size, and
the contour or coastline behaves as a smooth curve with defined tangents.

s;Hnbr TEST: RANDOM ISLAND, NEWFOUNDLAND

Despite the interest generated by Mandelbrot's illustrations, no strictly empirical test of
the model has yet been published. Scheidegger (8) rejected the model in principle on the {
argument that self-similarity is not widely observed in real terrain, but this view seems
overly rigid. Burrough (1) argued that many real phenomena display self-similarity over
linited ranges of scale in a paper which estimated D as a parameter for a very wide range
of phenomena, largely from spectra and variograms. The tests made in this paper are much
wre extensive, and are interpreted in the context of the geomorphic processes believed to
bave been responsible for the present form of the physical landscape. The test area is
fandom Island, which lies just off the coast of eastern Newfoundland.

Data were taken from the 1:50,000 Random Island sheet (NTS 2 C/4 printed 1972). The shore-
line, 250' and 500' contours and outlines of lakes were digitized to an accuracy of .25 mm :
on a Tektronix 4954 tablet. All lakes of area greater than 0.05 cm? were included, and all |
contour loops satisfying the same criteriom, to give a total of 153 lakes, 68 loops at 500,
“ 22at 250' and 5 at the shoreline, and two islands within lakes. A total of 8358 coordinate
pairs were captured. Figure 2 shows the result. Each line was labelled with descriptioms
of the space on either side and stored in the arc data structure defined by PLUSX (4).

LENGTH MEASURES

The coastline, 250 and 500 foot contours and lake outlines were treated as four different
sets of lines. Lengths were measured by simulating the stepping of dividers using a variety
of settings from 1 mm to 4 cm, or from 50 m to 2 km. Length estimates were then totalled
vithin each of the four groups, and plotted against step size.

The shoreline, 250' and 500' contours show strong linearity, with some deterioration at
mall step sizes because at these scales the accuracy of the original digitizing begins to
affect the results. D values were estimated from the slopes, at 1.11, 1.19 and 1.31

t respectively.. The lake outlines result is less linear. There is the same reduction in

slope for small step sizes, but an additional flattening at large step sizes since many of

mﬂ:_.m 1. Self-similar surfaces ﬂ@:m—.mﬁmn U< fractional Brownian Processesy tie suall lakes disappear completely at these scales. In between the slope approaches -0.8,

corresponding to D = 1.8. Although the data does not allow a reliable estimate of D for

that pure self-similarity is generally not a property of real landscape. However these
clues are usually ascribable to geologic controls or the influence of geomorphic processes,
and can be viewed as deterministic factors which have been imposed on the null hypothesis
landscape. The landscapes which most resemble those in Figure 1, and which are most self-
similar, tend to be those most lacking in geologic control or modification by geomorphic
process, such as lunar or dead-ice topography, or landscapes dominated by recent tectonic
activity.

The underside of a fractional Brownian surface is indistinguishable from the upper side, ani
pits and peaks should therefore occur with equal probability. A lake-rich glaciated
topography is more likely to resemble the fractional Brownian than one which has been
heavily modified by fluvial erosion ox mass movement, which may be identifiable as n_m<ww29nL
from the null hypothesis.

The feature which makes fractional Brownian processes most attractive as landscape null
hypotheses is the behaviour of measures with scale. From the self-similarity property the
configuration of any contour, cross section or element of surface is dependent on the scale
of observation: in the limit each is infinitely complex. Contours and surfaces therefore
lack tangents, and such measures as length or area are dependent on a defined scale of
measurement, in a way which is at variance with the behaviour of smooth geometric curves
but in agreement with the behaviour of such geographical features as coastlines (for revie
see (3), and see (9) for a further application).

The behaviour of measures with scale is characterized by a parameter D, the fractional
dimension. On a fractional Brownian surface the length of a contour or coastline L is a
function of the scale of measurement A, L{A) « v,u.cu. where for example A might be the spacim
of a pair of dividers used to "walk" along the contour, and L = NA the length estimate

obtained by multiplying A by the number of steps taken. Thus when log L is plotted against . . v ’
log A a straight line is obtained with a slope of 1-D. For contours of the surface, —n_ﬂ:_d N 1-9.— O* w:c_.m__—._m- NWQ N:Q mcc GO—;Q—:.m N:ﬂ _N—n@m.
D = 2-H. Similarly if a grid is laid over the map and those cells whose centres fall on
land coloured black and those on water, white, and the length of the coastline estimated by mm——nc__—._ _w_N—-Q. ZQic—:—n_w:a.
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the lakes, the results are at least consistent with the estimates obtained from other
methods below (Table I).

Grid cells were overlaid on each of the four line sets, using square cells with sides
ranging from 0.7 mm to 7 cm. Line lengths were then estimated by counting the number of
joins between black and white cells, using the 4-neighbour or Rook's case. The logs of the
join counts were then regressed against the log of cell size, and the slopes used to esti-
mate D.

In all four graphs there was some deterioration of linearity at the 0.7 mm cell size,
presumably because of the effects of digitizer accuracy. To allow for this, regressiomns
vere carried out both with (7 cases) and without (6 cases) this cell size, and the results,
including the correlation coefficients, are shown in Table I. They show the same monotonic
increase from the shoreline through to the lakes, but the numerical values are in most cases
higher than with the estimates from the dividers.

LOOP ALLOMETRY

A further estimate of D can be made by comparison of the various loops in each of the line
gsets. Consider the lake outlines for example, If a single lake is reproduced at half scale
its perimeter can be expected to halve, while its area will be reduced by a factor of four.
In reality, however, each lake's outline will be drawn with a similar level of generaliza-
tion determined by the scale of the map, so that if two lakes can be found with areas in

the ratio 1:4, the second can be expected to have a perimeter rather more than twice as long
as that of the First. Area A and perimeter P can be expected to follow a power law

A=k wv. 1<b<2 2)

over the set of observed lakes. At one extreme with smooth lake outlines b will approach 2,
and at the other b=1 when the outlines are so complex as to completely fill each lake, so
that perimeter behaves as a measure of area. In fact b = 2/D, and an estimate of D can
therefore be obtained by regressing the log of loop area against the log of perimeter foxr
each of the four line classes. Correlations were strong although the shoreline set had a
sample size of only five loops, and are shown in Table I along with the estimates of D.
Once again they show the same monotonic increase, but numerical values which are inconsis-
tent with other estimates.

TABLE 1
Estimates of D for four line sets, with associated correlations

Shoreline 250 ft. contour 500 ft. contour lake outlines

1.11 1.19 1.31 -
1.11 (-.9998) 1.29 (-.9990) 1.47 (-.9971) 1.53 (-.9959)

Dividers

Join counting, 7 cases

Join counting, 6 cases 1.13 (-.9998) 1.33 (-.9994) 1.54 (-.9984) 1.61 (-.9975)
Area/perimeter 1.14 (.9973) 1.17 (.9945) 1.19 (.9870) 1.30 (.9641)
DISCUSSION

In each of the previous analyses the Random Island topography exhibited the same type of
behaviour as the stochastic process or null hypothesis, that is, a log-log relationship
between length measures and scale, and the predicted form of loop allometry. However it 1is
clear that Random Island differs from Ho in a number of significant ways. First, estimates
of D vary consistently for the four line sets. It would appear that the topography at the
shoreline is considerably smoother (lower D) than in the centre of the island, since the

500 foot contour and lake outlines give a much higher D. All of the shorelines except the
easteru are on the sides of flooded U-shaped valleys formed by glaciation and affected by
some degree of structural control. In addition the shorelines have been modified by coastal
processes, which tend to produce smoothing through the formation of beaches, spits, etc., It
seems that the null hypothesis of a homogeneous fractional Brownian process must be rejected,
but that one capn conceive instead of a D which varies spatially from a low at the shoreline
to a high in the centre, and from a low at the western end of the island to a high at the
more rugged eastern end.

The length/scale relationships are highly linear, suggesting that the concept of self-
similarity can be accepted at least over the range of scales used, but with some exceptions.
The relationships tend to break down at scales below 2 mm, probably because of the limited
accuracy of the digitizing process, but possibly because of cartographic generalization or
the topography itself. For the lakes the dividers technique breaks down at scales above
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2.5 cm, but this seems to be a problem of the method since the join count results are not
affected. So although one would expect geomorphic and geologic controls to produce signifi
cant departures from self-similarity at certain scales, there is no clear evidence nrmm thi
has happened on Random Island over the range of scales used in this analysis. Finally al- ®
though the trends are consistent for each method, the numerical results ovnuwumm <sﬂ<<m=V|

stantially, joint counting producing consistently highe
r esti
500 ft. contour and lake outline sets. v e cetimates of D parcicularly for the

Fractional Brownian surfaces were defined earlier in terms of the relati

expected squared differences and distance, which shows a continuous EOMOMMMM”vHMMMMMMM

This is reflected in the examples shown in Figure 1 in the presence of a "drift" or wmwmﬂmw
trend of elevations, particularly for the smeoother surfaces of high H. The further two
points are apart, the more different their elevations. This is clearly not true of the
Random Island topography, since pairs of points at opposite ends of the island are almost

as similar in elevation as pairs within a mile of each other. Instead of rising indefinite-
ly, the expected squared differences tend to be asymptotic to some maximum value which is
achleved over a distance of a few miles, Thus while the local variability may exhibit the
null hypothesis behaviour, as revealed by the length/scale relationships for example, long-
distance variability does not. It may also affect the results of the join counting mawwwm»m
and may explain the inconsistencies noted in the previous section, although this must be ’
regarded as merely speculative given the lack of more detailed mwmm.

CONCLUSIONS

The fractional Brownian process has had mixed success in predicting aspects of the Random
Island topography. It correctly and uniquely predicts the relationships between line
lengths and scale and between loop area and perimeter, but the parameters of these relation-
ships are numerically inconsistent. The parameters vary in a manner which suggests the
existence of a nonhomogeneous fractional Brownian process, with systematic spatial variation
in the H or D parameter according to elevation and position. These variations are under-
standable in terms of the geomorphic history of the island, Within the range of scales of
these analyses there is good adherence to the concept of self-similarity.

We cannot, therefore, simulate Random Island by a single run of a fractional Bro -
cess with specified H, because of the spatial :o:roBOanmun< of the island and nmwuwwwwmmcm
lack of long-range variability. But the class of fractional Brownian processes is clearly
able to model many of the features of the topography, and H and D provide useful spatial
indices. None of these processes, however, would produce a landscape indistinguighable from
Random Island in general properties to the extent that a physical geographer would accept it
as a new piece of the coast of Newfoundland.

REFERENCES

—

. Burrough, P.A., "Fractal dimensions of landscapes and other envi "
porCrem Fokotao, p nvironmental data," Nature,

2. Dutton, G.H., Fractal enhancement of carto ﬁ@vw—u.n line detail American QNHnOWHNm#mN
:4 > ’

3. Goodchild, M.F., "A fractal approach to the accuracy of geographi
cal " -
matical Geology, 12, 1980, 85-98. Y geosrer measures,” Hathe

4, Goodchild, M.F., PLUSX Documentation.

Third edition, Department of Geo -
sity of Western Ontario, 1981. ’ P graphy, Univer

5. Mandelbrot, B.B., "On the geometry of homogeneous turbulence, with stress on the fractal
dimension of the 1so-surfaces of scalars,” Journal of Fluid Mechanics, 72, 1975, 401-416.

6. Mandelbrot, B.B., Fractals: Form, Chance and Dimension. Freeman, San Francisco, 1977,

7. Schachter, B. and N. Ahuja, "Random pattern generation processes," Computer Graphics
and Image Processing, 10, 1979, 95-114.

8. Scheidegger, A.E., Theoretical Geomorphology.

Second Edition, Spri v
New York, 1970. » Springer Verlag,

9. Woronow, A., “Morphometric consistency with the Hausdorff-Besicovitch dimension,™
Mathematical Geology, 13, 1981, 201-216.

1137




