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Topologic Model for Drainage Networks With Lakes

Davib M. Mark! AND MicHAEL F. GOODCHILD

Department of Geography, University of Western Ontario, London, Ontario, Canada N6A 5C2

Shreve’s probabilistic-topologic model for drainage network topology is herein extended and
generalized to allow for the presence of lakes. Drainage network topology is represented by an integer
string directly analogous to the binary strings used for channel networks without lakes. Validity
constraints on integer strings are presented, along with combinatorial results and methods for
generating ‘topologically random® networks. The hypothesis that network element degree and type is
independent of position within the integer string leads to good predictions of the relative frequencies of
various classes of small subnetworks within a 596-link network in northern Ontario. For the special
case of networks without lakes the model is equivalent to Shreve’s.

INTRODUCTION

R. L. Shreve’s ‘probabilistic-topologic model’ for channel

networks [Shreve, 1966, 1967, 1969, 1974, 1975] has proven
to be one of the most successful quantitative models in
landscape-scale geomorphology. While the model fails to
predict certain local properties of networks (for example, see
James and Krumbein [1969]), it accounts for many of the
overall properties of drainage networks and drainage basins,
from ‘Horton’s Laws’ to the ‘mainstream-length:basin-area’
relation [see Shreve, 1975; Smart and Werner, 1976; Jarvis,
1977; Smart, 1978].

One weakness of Shreve’s model is that it cannot directly -

be applied to networks containing ‘lakes fed by multiple
inlets’ [Shreve, 1966, p. 20], a feature shared by Horton's
11945] (see also Strahler [1952]) pioneering work. That this
has not been considered a major flaw is indicated by the fact
that almost all papers on network topology have ignored
lakes altogether; Shreve himself is one of the few to mention
them, and he simply assumes that lakes are not present in the
networks studied [Shreve, 1966, 1967, 1969]. However, lakes
are prominent features of most glaciated landscapes, land-
scapes which cover some 30% of the earth’s present land
area. Sample counts on the Canadian Shield, at the resolu-
tion of 1:50,000 scale maps, have yielded typical lake
densities of 0.4-0.6 lakes per square kilometer, which would
indicate some 2 million lakes in that physiographic province
alone.

In this paper we present a more general topologic model
for stream networks which allows for the possibility of lakes
with multiple inlets. An important feature of our model is
that it collapses to Shreve’s when the number of lakes equals
zero. The model networks can be represented by integer
strings directly analogous to the binary strings [Shreve, 1967]
used for trivalent networks. We discuss the properties of
these strings, some combinatorial results for them, and
algorithms for generating ‘random’ networks within a certain
class. We conclude with a preliminary test of an extension of
Shreve’s [1967] ‘topological randomness’ hypothesis to net-
works with lakes.

THE MODEL

A lake is defined as a body of surface water, not a part of
the world ocean, in which water flow velocities are too low

! Now at Department of Geography, State University of New
York at Buffalo, Buffalo, New York, 14260.

Copyright 1982 by the American Geophysical Union.

to transport suspended sediment. This definition leads occa-
sionally to difficulties in identifying individual lakes on maps
(How much must a river widen before a lake is considered tc
be present? How small must a ‘narrows’ be before a lake is
subdivided into two lakes?). The stream network is ther
considered to be a ‘planted plane tree’ with two classes of
vertices: ‘normal points,” which must be of degree 1 (point
sources plus the basin outlet) or 3 (stream junctions), and
‘lakes,’ which may be of any degree greater than or equal tc
1. ;

In graph theory, two graphs are said to be isomorphic il
there exists a one-to-one correspondence of their vertices
which preserves adjacencies. Shreve [1966, p. 27] introduced
the term ‘topologically identical’ for isomorphic channel
networks which could be made to correspond exactly by
continuous deformation within the plane. The complement
of this term is ‘topologically distinct,” and the abbreviation
TDCN has become standard for ‘topologically distinct chan-
nel networks.” Channel networks which are isomorphic but
not necessarily topologically distinct are said to belong to the
same ambilateral class [Smart, 1969]. Extending these con-
cepts, we require in addition a correspondence of vertex
type (lake or normal point) for isomorphism. Systems possi-
bly containing lakes which cannot be made to correspond by
continuous deformation within the plane are termed ‘topo-
logically distinct drainage networks’ (TDDN). The term
‘ambilateral class’ is retained without change.

We assume that the tree is a directed graph pointing
toward the outlet and that each lake is of out-degree exactly
1. Although lakes with more than one natural outlet do exist
(for example, Lake Anima-Nipissing in the Montreal River
basin in the Temiskaming area of northeastern Ontario), they
are very rare. We also exclude at present lakes with no
surface outlets, and we also ignore islands within channels.
Furthermore, our model cannot accommodate drainage sys-
tems on islands in the lakes within the network. The fact that
our model cannot accommodate these situations is not
considered to be an important disadvantage. In schematic
diagrams of network topology we represent lakes by open
circles of constant size, regardless of the lakes’ true sizes
and shapes; an example is shown in Figure 1.

Integer String Representation

Scheidegger [1967] and Shreve [1967] reported that the
topology of a trivalent planted plane tree can be representec
by a binary string. Smart and Werner [1973] described :
number of algorithms for generating and processing thes
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S ={3034021011511021)

‘Fig. 1. Schematic representation of a drainage network includ-
ing lakes (circles) and S, the integer string representation of the
network (see text).

strings. Each link in the network is represented in the string
by a binary digit indicating the type of vertex at its upstream
end: @ if that is a junction (interior link) or 1 if that is a source
(exterior link). The string begins at the outlet and thus must
start with a zero (unless the network has only one link). The
links are traversed in order by turning left at each junction
and reversing at each source, and the code for link type is
recorded only the first time that a particular link is traversed.
For a trivalent network with p sources there are 2y — 1 links
and thus 2u — 1 elements (u ones and p — 1 zeros) in the
binary string which uniquely represents the network topolo-
gy. The number of sources (u) is termed the magnitude of the
network. Link properties (lengths, areas, gradients, etc.)
may be readily manipulated if stored in ‘parallel’ vectors,
also of 20 — 1 elements,

For planted plane trees with V vertices each of unrestrict-
ed degree, the topology can be represented uniquely by a
string of 2V binary elements [deBruijn and Morselt, 1967].
Beginning at the roof of the graphs, links are coded U as they
are traversed in the upstream direction and D in the down-
stream. However, in the present case, point sources and
lakes with no inlets, while both vertices of degree 1, are
considered to be geomorphologically and hydrologically
distinct; similarly, lakes with two inlets must be distin-
guished from forks. By adding a binary digit after each U to
indicate whether or not the link drains a lake, such networks
could be represented by 3V elements. While this is a very
compact representation, we propose an alternative coding
system which has many advantages in the processing of
stream networks.

A stream network, containing lakes, can be represented
by a string S of k integers, one for each of the k channel links
in the network. Each link’s code integer depends again on
the vertex at its upstream end: normal junctions are repre-
sented by 0, normal sources by 1, and lakes by integers sj,
where s; equals 2 more than the number of lake inlets (or, 1
more than the degree of the vertex). As in the binary strings
used for trivalent networks, links are traversed beginning at
the basin outlet and turning left at each junction. If a link
drains a lake, the next link in sequence is the first inlet to the
lake encountered as one moves clockwise around the lake
shore; if the lake has no inlets, one reverses back down the
last link, as one does at normal sources in the binary string.
Also as with trivalent networks, links are only recorded the
first time they are traversed. This integer string representa-

tion uniquely defines the topology of a stream network with
lakes. An example is given in Figure 1. Note that the
particular codes chosen for normal points ensure that if 3
network has no lakes, the integer string is identical with
Shreve's binary string for that network.

Properties of Integer Strings
Consider a string of exactly k integers,

s={3j|j=1,2,"‘,k}

Theorem 1: S represents a valid complete drainage net-
work if and only if

M;>0 forall i<k

and
M]k =0

where

Mpg =1+ Npgl® = NpD) + 3 (m = 3)N,(m)
m=2

and where N,,(m) denotes the number of elements in the
substring {sp, Sp+1, * = * , 84} for which s; = m and spay equals
the largest element in S.

Proof: By definition, each element represents a vertex
with an out-degree of exactly 1. M,, may thus be seen as
enumerating the excess in-degrees (i.e., unused points of
attachment), if any, in the substring in question: each fork (0)
has an in-degree of exactly 2 and thus increases the excess of
in-degrees by 1; each normal source (1) has an in-degree of
zero and decreases the count by 1; each lake (m, for some m
greater than 1) has an in-degree of m — 2 and increases the
excess of in-degrees by m — 3. The initial term, 1, is included
because the out-degree of the first element is not balanced
against any in-degree within the substring. Obviously, any
string for which M,, < 0 cannot represent a valid network.
However, if M,, = 0, the next element, 5.+, Will not be
attached to an element in that string but to some fork or lake
represented by an element s,,, w < p. Thus a complete valid
drainage network must have M;; = 0 and also My; > 0fori <
k. .

Notation: N(m), without subscripts, will hereafter be
used to denote the number of elements in the entire string S
for which s; = m.

Additional Definitions

As will be shown below, the presence of lakes greatly
increases the number of possible topologically distinct ar-
rangements. Thus for statistical testing it often becomes
necessary to group networks. For channel networks without
lakes the aforementioned ambilateral classes have often
been used for this purpose. Two more bases for grouping are
suggested for networks with lakes.

One is the ‘lake-degree set.’ For a drainage network
containing exactly L lakes, the'lake-degree set is defined as
the set of exactly L nonnegative integers denoting the in-
degrees of the lakes. By convention, these will be listed in
ascending order. ‘

Following Smart and Werner [1973], a ‘path’ is the short-
est route between a particular vertex in a channel network
and the network outlet. We may then define the ‘lake-path
subgraph’ of a network as the set of all paths commencing at
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lakes, together with the lakes, the outlet vertex, and any
junctions at which distinct lake-paths merge. Two networks
are said to be members of a lake-path identity set (LPIS) if,
and only if, their lake-path subgraphs are topologically
identical plane trees. Networks with two lakes and one
source arranged by LDS and LPIS are shown in Figure 2.

Some Combinatorial Results

De Bruijn and Morselt [1967] have shown that the number
of distinct plane trees with m lines (in stream networks,

links) is given by
l 2m -2
m\m-1

This assumes that all vertices of a given degree are identical.
For stream networks, and with no restrictions on lake in-
degrees, we could simply multiply this by terms representing
the number of ways the point sources could be distributed
among the vertices of degree 1, and the forks among degree 3
vertices. However, since there are fairly strong geomorpho-
logical constraints on lake in-degrees within a region, the
following approach may be more useful.

Any string § can be reduced to a related binary string by
ignoring the lakes in the network. Any 2 becomes a 1 in this
transition. Similarly, any 4 becomes a 0, indicating a simple.
junction of the lake’s two inlets. A 3 is deleted, the inlet and
outlet being represented by whatever binary integer follows
the 3 in the string. A lake of in-degree (m — 2) greater than 2,
represented by an integer m greater than 4, cannot be

DRAINAGE NETWORKS 277

reduced uniquely; one possible reduction substitutes exactly
m — 30's.

These rules can be used to obtain the number of topologi-
cally distinct networks with a particular lake-degree set and
with smax < 4. Consider a binary string with & 1’s and u — 1
0's, where u = N(1) + N(2). Shreve [1967] gave the
corresponding number of topologically distinct trees as

po ! (2,; 1)
2n -1 n
Now consider all those strings with sp., =< 4 which would
reduce to binary strings with u 1’s if the lakes were replaced,
following the transition rules. The N(2) 2's can be substitut-
ed for any combination of the p 1's; thus for each of the P

TDCN'’s the number of distinct networks which may be
formed by inserting the 2's is given by

o)

Similarly, the N(4) 4’s may be substituted for any combina-
tion of the u ~ 1 0’s in

p—1
N(4)
distinct ways.

Any number of the N(3) 3’s may be placed in front of any
integer in the string, creating a string of length 2u — 1 +
NQ). However, the final position must be occupied by a 1 ot
a2, leaving 2u — 2 + N(3) feasible locations. The number of

LAKE — DEGREE SETS

(0,0) (0,1) (0, 2)[(1 1)
U) {not (not
E 00212 02012 00221 0312 possible) | possibie
7]
> ©22) %{3 , Oj'é) O\
= .
P
lé-' 00122 02021 01022 0231
T
<
o
| (not possible)
w
X 3012 | o132 | 412
< .
-

(32)
33t
3021 | 0321 | 421

Fig. 2. The 15 possible topologically distinct drainage networks which can be formed from exactly two lakes and one
normal source.
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TABLE i{. Maximum Possible Number of Distinct Lake-Degree Sets With L = 10 Lakes and
N(1) = 10 Normal Sources

N(1)

L 0 1 2 3 4 5 6 7 8 9 10
* 1 1 1 1 1 1 1 1 1 i l

1 2 3 4 5 6 7 8 9 10 11

2 4 6 9 12 16 20 25 30 36 42

4 7 11 16 23 31 41 53 67 83 102

7 12 18 27 38 53 71 94 121 155 194

19 29 42 60 83 113 150 197 254 324

19 30 44 64 9%
30 45 66 94 132
45 67 96 136 188
67 97 138 192 265
97 139 194 269 366

COCVRBIANBEWND—D
p—
~

o

125 169 227 298 388 498
181 246 328 433 566 730
258 347 463 609 795 1025
359 482 639 840 1092 1410
494 658 870 1137 1477 1900

* With zero lakes the lake-degree set is the null or empty set.

possible arrangements can be found by considering the
number of distinct ways in which 3’s can be placed in N(3) of
these locations, the remaining 2p — 2 positions plus the last
one being occupied by the original string. The number of

ways is thus
2p — 2 + NG3)
N@3)

Note that the implied condition N(1) + N(2) = N(0) + N(4)
+ 1 follows from theorem 1. Thus the number of distinct
networks with particular N(0), N(1), N(2), N(3), N(4), and
Smax = 4 is given by

1( T N + NQ)
TAN1) + NQ2) NQ)

_' (N(O) - N'(4)) (T —1+ N(s))'

N@) NG)

where .
T=N@O)+ N1+ N2+ N4 =2u-1

The number of topologically distinct networks in a given
lake-degree set is obtained by summing over all possible
values of N(1) (or N(0)) and is clearly infinite.

The number of possible distinct lake-degree sets for a
network with L lakes will of course depend on the number of
inputs to lakes. This is clearly a problem of partitioning. One
of the best known partitioning problems involves dividing an
integer n into at most m parts. The number of distinct ways

in which this can be done is conventionally denoted as p(n,

m) and has been tabulated by Gupta [1962]. Dividing n into
at most m parts is equivalent to defining a set of exactly m
integers, some of which may be zeros, whose sum is exactly
n. Thus if the total number of inputs to lakes is exactly 7, the
number of distinct lake-degree sets is given by p(l, L). There
is no closed expression for p(n, m); values can be obtained
by a recursive formula first developed by Euler in 1748
[Gupta, 1962] and repeated by Gupta [1962, p. ix]. The latter
reference tabulates p(n, m) for n < 200, m =< 100, and also for
201 = n < 400, m < 50.

If only the number of lakes (L) and the number of sources
{N(1)) are specified, the number of inputs to lakes may range
from zero to a maximum of L + N(1) — 1, depending on the
number of forks. In this case the number of distinct lake-

degree sets is given by

L+N()-1
OLNOY = X pU, L)

=0

Values of TI{L, N(1)] for L = 10, N(1) =< 10 are given in Ta
1. As an example, for networks with exactly three lakes :
two normal sources, there are 11 distinct lake-degree se
these include a total of 485 topologically distinct networ]

Generating ‘Topologically Random’ Networks

In order to test certain hypotheses about larger network
may be necessary to generate either all possible networks
a given size or a random sample from this population. 1
best approach to this at present would seem to be to perm
or shuffle the integer string.

Beginning with a valid string, pairs of string elements
selected, and interchanged, as long as the exchange does
produce an invalid string. If a vector is generated whose
element is M,;;, then an exchange of two elements ¢
influences values of that vector between the elements,
hence the validity check is restricted to that part of S. P
of points to be interchanged may be selected so a:
produce all valid string permutations [Robson, 1969} o
produce a randomly shuffled string.

TABLE 2. Observed Number of Subnetworks in the Marchir
River Basin Having 11 Links or Fewer, by Number of Lakes (L
Number of Normal Sources (N(1)) (Note That These Are N¢

Independent)

N
L 0 1 2 3 4 5
0 X 182 27 4 3 1
i 105 23 9 8 3 2
2 42 10 5 3 2 3
3 15 2 3 1 1 0
4 13 1 0 2 0 0
5 12 2 0 0 0 0
6 4 { 1 0 0 0
7 6 1 0 0 0 X
8 3 1 0 0 X X
9 3 1 0 X X X
10 4 0 X X X X
11 1 X X X X X

X means not possible with at most 11 links.
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". TABLE 3. Observed Link-Type Probabilities for Marchington
- River

Type Probability

0 0.242
1 0.305
2 v 0.176
3 0.182
4
5
6

. 0.058
0.015

or higher 0.020

AN EMPIRICAL TEST

As a first test of the topological model for networks with
jakes, data were obtained on the topology of a natural river
pasin. Based on a visual inspection of several 1:50,000
£ ¥ topographic maps from northwestern Ontario, an area was
i selected which had many lakes, no extremely large lake (or
parts thereof), and a minimum of overt structural control.
i The Marchington River above Stranger Lake (grid location
;. (79683, map sheet 52J/6) drains an area of approximately 830
km?. As interpreted by the cartographer, the connected
network consists of 596 links; it includes 270 lakes, 182
normal sources, and 144 forks. The (topologically) largest
lake (Kashaweogama Lake) has an in-degree of 18: the basin
also contains 31 small lakes with neither inlets nor outlets; as
these are not integrated into the network, they are not
further considered here.

" A computer program was written to extract subnetworks

of various sizes or characteristics. Briefly, the program

begins at any link not represented by a 1 or a 2 and then

scans ahead a certain number of links in the integer string,

testing to determine whether or not a complete string has

been found. If one is completed, the string is printed, and the

resulting subnetwork topologies can be compared. Table 2

lists frequencies of subnetworks by type.
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Hypotheses

Shreve [1967, p. 183] states that in a binary string repre-
senting an infinite topologically random network the charac-
ter representing an exterior link (in our notation a 1).‘appears
at any specified position with probability 1/2 regardless of
the pattern anywhere else in the sequence.’ From this
property, one can derive the hypothesis that all topologically
distinct subnetworks with a given number of sources (a
particular magnitude) are equally likely to occur.

Initially, we attempted to generalize the verbal expression
of topological randomness to identify an appropriate set of
graphs all of which would be expected to be equally likely to
occur. None of the attempted generalizations correctly pre-
dicted the frequencies of subnetworks having specified num-
bers of lakes and of normal sources.

The possibility that the Marchington- River network de-
parted significantly from topological randomness was further
investigated by performing random permutations of the
string. These permutations did not notably alter the relative
frequencies of subnetworks falling into various lake-degree
sets, indicating that the constraints on subnetworks were not
geometric.

A generalized version of Shreve's statement concerning
infinite topologically random networks is as follows:

In the integer string representing 2n infinite topologically ran-

~ dom network including lakes, each link-type code appears at
any specified position with a constant probability which is
independent of position in the string, regardless of the pattern -
anywhere else in the sequence.

If the individual link-type probabilities are available, this
leads to the hypothesis that the probability of any set of
subnetworks is equal to the sum of the. probabilities of its
members, where each member’s probability is simply the
product of the included link-type probabilities. Note that
under this hypothesis, all substrings consisting of the same
set of elements are expected to occur with equal frequency;

TABLE 4. Expected and Observed Frequelicies of Lake-Degree Sets (LDS), Marchington River

Calculated Simulated Observed
LDS Number* Percent Numbert Percent Number Percent
i One Lake, One Source
[0] 15.5 32 14.5 28 8 35
[1] 333 68 37.5 72. 15 65
Total 438 100 . 51.9 100 23 100
' Two Lakes, No Source
[00] 4.5 19 4.9 21 8 19
[o1] 19.2 81- 18.3 79 34 81
Total 23.7 100 23.2 100 42 100
Two Lakes, One Source
{00] 2.0 10 2.0 9 1 10
o1} 8.5 42 9.1 42 4 40
{02] 3.8 18 5.0 23 1 10
[11] 6.1 30 5.5 25 4 40
Total 20.3 100 21.6 100 10 100
Three Lakes, No Source
[000] 0.4 5 0.2 3 0 0
[001] 2.4 33 2.3 29 3 20
[002] 1.1 15 1.2 15 2 13
[o11] 3.5 47 4.1 52 10 67
Total 7.4 100 7.8 100 15 100

* Calculated probabilities were multiplied by & = 596 to obtain these expected frequencies.
t This is the mean frequency for 10 simulation runs.
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within a lake-dcgree set, all subnetworks with a given
number of sources would be equiprobable.

When the observed link-type probabilities (Table 3) were
used, the predictions based on this generalization of topolog-
jcal randomncss concurred well with the‘results of Fhe
random permutations (see Table '4) and with the relative
frequencics observed in the origmal network. The lake-
degrec scls in which there are no inputs to lakes are seen to
occur infrequently simply because they have more forks and
hence more string elements, all of which must have link-type
probabilitics less than 1. On a local scale within the network,
Marchington River's smaller subnetworks do seem to be
topologically random.

Why do certain classes (for exan}ple, one lake, one
source) oveur less frequently than predicted, and others (for
example. two lakes, no sources? occur more frequently?
During the collection of the data it was obsgrved that some
subbasins had large numbers of lakes, while others were
almost cntirely lake-free. If some parts of the network had
more lakes than others, this would increase the probability
of lake-rich or lake-poor subnetworks, at the same time
reducing the chance of mixed categories. The sequence of
‘lake' (2. 3. 4, etc.) and ‘nonlake’ (0, 1) elements in the
Marchington River integer string was tested usinga 2 X 2
contingency table; the hypothesis that successive elements
were independent with respect to this classification was
rejected (chi-square value of 50.46 with one degree of
freedom), confirming the impression noted above. The dis-
tribution of lake and nonlake elements within the basin is
probably controlled by the surficial geology of the region and
is a significant nonrandom element in the total network.

SUMMARY AND DISCUSSION

The keystone of Shreve’s [1966, 1967, 1975] probabilistic-
topologic approach is the postulate that all topologically
distinct networks with'a given number of sources are equally
likely to occur. This postulate can be deduced mathematical-
ly from the general hypothesis presented above.

Shreve's original model went on from purely topological
properties t0 include a second postulate: regarding link
lengths [Shreve, 1969], which led to estimates of many
aspects of basin geometry (for example,.see Shreve [1974)).
lncorp@mtion of the geometric factor into our model for
networks with lakes is more complicated. Not only are there
six fundamental link types (normal source, fork, or lake at
upstream ¢nd; fork or lake at downstream end) rather than
two (enterior link, interior link), but also the lakes them-
selves contribute to stream lengths and other aspects of
basin geometry. Work on link lengths and lake geometry is
alrcady in progress.

The chief weakness of the probability model presented
here is its present reliance on empirical estimates of the
frequencies of link types, in particular the probability densi-

MARK AND GOODCHILD: DRAINAGE NETWORKS

ty function for the lake in-degrees. The number of inlet
streams for a particular lake should be closely related to the
geometric size of the lake. Thus it should be possible to
estimate lake in-degrees from the distribution of lake areas in
a region. We thus envisage a more refined model which
would estimate frequencies of network topological classes,
based only on a ‘lake:link ratio’ and plus the parameters of
the lake in-degree model. These parameters would represent
basic constraints on the randomness of drainage networks.
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