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The frequency distribution of settlement links forms the basis of a linear pro-
gramming methodology which can be utilized to analyze the structure of settle-
ment systems. The resulting index of system topology is compared to a more con-
ventional measure, Geary’s contiguity coefficient, which may be applied when the
problem is conceptualized as one of spatial autocorrelation on a k-color map. The
index of linkage similarity that is introduced appears to have a useful advantage
over the Geary measure. The Geary and linkage similarity indices are used to ex-
amine the topology of four Canadian and two hypothetical settlement systems.

The term settlement system implies a
set of population clusters and the set of
interactions which occur between them.
In many instances these interactions
manifest themselves in the form of a
readily identifiable transportation or
communication infrastructure—a road
network, for example. It has become
conventional to apply graph theoretic
techniques to the analysis of such a sys-
tem; the connectivity between nodes un-
differentiated on the basis of population
size is of central concern [9; 14; 23].

A number of alternative approaches to
the analysis of settlement systems have
been employed by geographers, econo-
mists, and regional scientists. These in-
clude: settlement size distribution anal-
ysis [1; 2; 20; 24]; models of relative loca-
tion [3; 4; 15; 22], the best known of
which derives from central place theory;
and mathematical process models [6; 7;
11; 16; 18], which test whether an areal
distribution of points (settlements of un-
specified population size) could have
been generated by a particular mathe-
matical process.

® The authors are grateful to Donald G. Janelle
and John C. McPherson for comments on an earlier
draft of this paper.

No one of these approaches to settle-
ment system analysis is able to satisfac-
torily deal with both the size differentia-
tion of nodes in a system and the connec-
tivity between nodes. Nodal connectivity
is a particularly important consideration,
for unless the nodes are connected in
some manner they do not constitute a sys-
tem. Similarly, the size differentiation of
nodes is for most purposes an essential
component of this type of analysis in that
a settlement system is characterized by a
functional hierarchy that is generally
thought to be related to settlement size.
Settlement size distribution analysis is
clearly unsatisfactory in this context in
that it is entirely aspatial. Both graph
theory and mathematical process models
fail to differentiate nodes on the basis of
size. In addition, the latter are concerned
only with the distribution of nodes in the
plane and neglect the connectivity be-
tween them. A similar criticism can be
made of models of relative location
which, while considering the size and
spacing of nodes, generally do not ex-
plicitly address connectivity. Further,
relative location models may be princi-
pally regarded as descriptive frame-
works having limited utility as analytical
tools.
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The purpose of this paper is to suggest
a pair of parallel methods for analyzing
the hierarchical spatial structure of settle-
ment systems. Both methods provide
readily interpretable indices of hierarchi-
cal connectivity in the topology of spatial
systems and may be employed to deter-
mine whether such systems are hierarchi-
cal, non-hierarchical, or random in struc-
ture. The development of such a method-
ology represents a significant comple-
ment to the set of tools available to the
spatial analyst; it now becomes possible
to objectively measure the extent to
which a set of settlements are hierarchi-
cally arranged over space. The implica-
tions of the utility of such a tool in the
context of central place theory, for exam-
ple, are obvious.

The first of the parallel methods is de-
rived using a linear programming frame-
work. The second method represents a
novel application of a more conventional
measure, Geary’s contiguity coeflicient,
which may be applied when the problem
is conceptualized as one of spatial auto-
correlation on a k-color map. Although
the two methods are closely related, the
index of linkage similarity that is intro-
duced appears to have a useful advan-
tage over the Geary measure.

The basis of the approach adopted is
conceptually simple. In a settlement sys-
tem consisting of A links and N nodes, if
nodes are assigned to k discrete size
classes, it becomes possible to define a set
of k (k + 1) /2 link types. It is the fre-
quency distribution of settlement link
types which is central to this method of
analysis.

Tue ExPECTED DISTRIBUTION OF
Link Types

In the absence of any detailed physical,
socioeconomic, or historical information
one would expect the relative frequency
distribution of link types to be related in a
probabilistic manner to the relative fre-
quency distribution of the N nodes across
the k classes. More precisely, the expecta-
tion is that a given settlement size distri-

bution will result in a set of linkages hav-
ing relative frequencies the same as if two
settlements were drawn, with replace-
ment, from an urn containing k different
classes of settlement, where Px is the
probability that a settlement belongs to
class k. This is a random mixing model
which denies the systematic occurrence
of linkage patterns, other than those
which would occur by chance. Under
this free sampling scheme, the expected
number of links between two type k
settlements is given by AP’ and the ex-
pected number of links between two
settlements of types i and { is given by
2AP;P;. If, using notation introduced in a
later section, the settlement size classes
are R, H, V, T, U and occur with relative
frequencies Pr, Pu, Pv, Pr, Py, the link
type frequencies have the multinomial
distribution for two trials, the probabili-
ties of which may be generated by ex-
panding

(PR + Pu + Pv + Pr + Py =
Pr? + Pu® + ... + 2PgPu +
2PgPy + ...+ 2PrPy

The observed link type distribution for
a settlement network may be compared
with the network’s expected distribution
using a goodness of fit test. This makes it
possible to determine whether a given
network exhibits a random arrangement
in terms of the direct connectivities be-
tween nodes belonging to the various
classes. The appropriate null hypothesis
is, of course, that there is no significant
difference between the observed link
type distribution and the random distri-
bution given by the multinomial model.

A chi-square test using data from se-
lected areas in the Prairie and Atlantic
Regions of Canada indicates that all ob-
served link type distributions differ sig-
nificantly from their respective null
hypothesis (random) distributions. While
the knowledge that these particular set-
tlement systems have topologies that are
non-random is perhaps interesting in it-
self, a considerable amount of useful in-
formation is still obscured. Specifically,
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in what manner do these networks depart
from a random arrangement of linkages?
Is there a tendency for nodes to be linked
to other nodes of a similar class, or to be
linked to other nodes belonging to differ-
ent classes? In order to answer this ques-
tion, we introduce a measure of linkage
similarity based upon a linear program-
ming framework.

LiNkAGE SimiLARITY INDEX

A settlement network consisting of A
total links, N total nodes, k size classes, n;
nodes in class k, k(k +1)/2 link types, and
having nj links between type i and type §
nodes may be defined by the following
constraints:

S % ong=A I
iZ1 21T 1)
S+ X o=
=i >i

i=1,...,k (2)
g+ X oy =1
i>i i<i

i=1, ...,k (3)
0 < ny < nin

i=1,...,k

i=1....ki#j (4

0 < ni < m(ni - 1)/2

i=1...,k (5)

Constraint (1) indicates the observed
total number of links in a network; con-
straint (2) requires that there be as many
links within a class of nodes as there are
nodes (this does not eliminate the possi-
bility of isolated nodes, but only net-
works without isolated nodes are being
dealt with); constraint (3) requires that
there be at least one link between node
types; and constraints (4) and (5) set the
lower and upper bounds upon the num-
ber of links, ny, possible in the system.
The collection of njj satisfying constraints
(1)-(5) is denoted by S(A, n1, . . ., ng).

For the given parameters A, ni, . . ., nx,
there are many link distributions X = (n3;)
in the network system S(A, my, . . ., k).
Let X* = (n*;) represent the random link
distribution generated by free sampling
in the multinomial model; X* may be

demonstrated to be in S(A, ny, . . ., my), if

A= N:

k

S ny = AP® 4+ 2A 3 PP; =

i=1 i*i

An®  2An; fii nj

A

Ani® 2An; (N-n;) 2ANn; - Anf

A N2
ANn;

= e = ni

Thus, constraints (2) and (3) are satisfied;
clearly, constraints (1), (4), and (5) are
satisfied by construction.

For any link distribution X satisfying
the constraints (1)-(5) it is possible to de-
fine a measure of nodal affinity. If wijis a
weight expressing the degree of simi-
larity between type i and type § nodes,
the total affinity of S is defined as

ko k
fF(X)=2%2 X wyns
=1 =it

Returning to the random model, the net-
work affinity is given by

k k
#) — . -/ N2
fiXe) = % 3wy (2Amn/N°)

k 2,772
+ 2 wy (An®/N°) =
i=1

2A k& 1 & )
NG (151 7‘=Zi+1 wij ning +§ 151 wy nd)=p
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This level of affinity p is achieved by
chance. Networks in which thereis a pro-
pensity for similar (or dissimilar) node
types to link will show departures from
this value. We can, in fact, determine the
total affinity for the distribution of links
Xm and Xw, which have the minimum and
maximum values of f, respectively. So let

2 =

M = max {2 3 wi ny |
i if

A =, 3 ong =1,
i #i

0 < nyi < ny = ni(ni-1)/2, ny integer}

%oy =

m = min {3 X wy ny |
i i

A Sy =2m, 2o =1,
i i
0 < ny < nminy, 0 < nyy < ni( -

1)/2, ny integer}

The values M and m can easily be deter-
mined for a system S(A, ny, ..., m) with
the following procedure:

1. In the case of the maximum, satisfy
lower bounds given by constraint
(2) with N links yielding maximum
affinity. In the case of the minimum,
satisfy lower bounds given by con-
straint (3) with k-1 links yielding
minimum affinity.

2. Distribute the remaining A-N (or
A-k+I1) links satisfying upper
bounds in (4) and (5) to get maxi-
mum (minimum) affinity.

If we have an observed distribution of
links X in a connected network in the sys-
tem S(A, ny, ..., nk), then we can use simi-
larity weights wy; to determine:

f(X) = affinity of the observed net-

work;

p = indifference level for the sys-
tem;

M = maximum level of affinity for
the system;

m = minimum level of affinity for
the system;
where m < p < M. Then the linkage simi-
larity measure is defined as

I (X) = (f(X)-p)/(M-p)
if p=f(X)
or
(f(X)-p)/(p-m)
if o> f(X)

Clearly, -1 < Ji(X) =1 and Ji(p) =0,
where J1(X) <0or J1(X) >0 when there is
an affinity for similar or for dissimilar
node types to link, respectively. An alter-
native form of the index may be written

as
Jo(X) = %)9—

One can see that if Ji(X) > 0, then

f(X) _

HX) g

_ fX)-p _ 0 _ Jx(X)-1

hX) = M-p M-1 M -1
Y Y

Therefore, we have the relationships

Jo(X) =1+ (M -1JuX) if Ju(X) >0
0

and

JoA(X) = 1 + (I-m)I(X) if J(X) < 0
)

Now, as stated in the previous section,
under the free sampling hypothesis, X has
a multinomial distribution with the prob-
ability of an i to jlink given by IT; = p? for
i=f and II; = 2pip;, for i7%j. Then f(X), a
linear combination of the frequencies in
X, has a distribution which is asymptoti-
cally normal (19, p. 317] with mean

2A k k
Z—\7—2(Z 3

E(f(X)) = A X wy Il =
b =1 j=it]

k
wy mong + = 3 wind) = p
i=1
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and variance

Vif(x)) = A[,Zi wi? I - (3 wy I3)%]
1, 1,1

Kk
2A

= — 2 z i.2 i 1
N iSp =ity R

k 2

1 Np

+ = 3 wg@n? - - ——
2i=1 2 A

Since the indices J:(X) and Jo(X) are sim-
ple rescalings of f(X), we can test the ran-
domness hypothesis for the indices (E(]1)
=0 or E(J2) = 1) with a normal test on

F(X).

SPATIAL AUTOCORRELATION

An alternative method of conceptual-
izing the problem of linkage similarity in
a settlement network is suggested by con-
sidering the dual of the graph: each node
is replaced by a polygon (the node may
be thought of as the centroid of the poly-
gon), and each link is replaced (inter-
sected) by a boundary line between two
polygons. The k settlement size classes,
which have been used to give an ordinal
measure to each node, can be repre-
sented as a coloring of each polygon.
Since the problem of interest to us is de-
pendent only upon the topology of the
network, anything thatis true of the origi-
nal graph can also be derived from the
dual.

Within this framework, the problem
now becomes one of measuring spatial
autocorrelation [5; 8; 10; 17] on a k-color
map. For ordinal colors the conventional
measures of randomness for the system
as a whole are the Moran and Geary in-
dices.! The Geary index has an expected
value of 1.0 for a random pattern, and is
less than 1.0 given a greater than random
tendency for similar classes to be con-
tiguous (linked) and greater than 1.0 fora

' Cliff and Ord [5] provide a useful review of
these indices.

greater than random tendency for dis-
similar classes to be contiguous. One dis-
advantage of the Geary index, however,
is its lack of general limits. The range of
values that the index can assume depends
upon the geometrical pattern of zones
and upon the set of data values (colors)
[12].

An alternative to the Geary index is
Moran’s I, to which c is related by an ex-
pression given in Geary [10]. The prob-
lem of undefined limits also extends to I,
and since there are no clear grounds for
choosing between them, we have limited
the discussion to Geary’s c. A spatial auto-
correlation measure for ordinal data has
been introduced by Royalty et al. [21],
but it and the generalization by Hubert
[13] are less appropriate to this applica-
tion.

To calculate Geary’s contiguity coeffi-
cient ¢, we first assign the integers I to k to
the size classes (e.g., the class of smallest
settlements is assigned I, the largest is
assigned k). We denote this by x;, where
i=1,..., k. The coefficient is then

e 12
N-1 % 72 i xi xJ)

24 3 nixi-x®)?
1

c

where x* = Znixi/ N. This notation is not

the usual one for interval data. Note that
¢ = Jo(X) when wy=(j-i)?.

It is possible to test ¢ against a null
hypothesis that the colors (size classes)
have been arranged randomly. The ex-
pected value of ¢ is 1.0; for a given settle-
ment system, link distribution X* gener-
ated by the multinomial model produces
a value of 1.0. The distribution of ¢ is
demonstrated by Cliff and Ord 5] to be
asymptotically normal; ¢ may be tested
for significance as a standard normal de-
viate under either of two assumptions:
normality, in which the x; are assumed to
be the results of N independent drawings
from a normal population; or, random-
ization, in which, whatever the underly-
ing distribution of the population, the ob-
served value of ¢ is considered relative to
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the set of all possible values which ¢
could take on if the x; were repeatedly
randomly permuted around the system
(there are N! such values). We have
chosen the randomization assumption.
The variance in ¢ is thus

1 2
N(N-2) (N-3) oAz 24 [~(N-1)" b>
+ (N%* - 3)]

+ 2A(N-1) [-(N-1) by + N* - 3N + 3]
+ (D+A) (N-1) [(N*-N+2) b®
- (N*+3N-6)]}

where bz is the sample kurtosis coeflicient
by = (Sni(xi=x*")*/ Zni)/(Eni(xi=x )%/ In;)*
1 1 ] 1

and

N
D = 43 Li(L-1)
l=

where L; denotes the number of polygons
(nodes) contiguous to (linked to) the ith
polygon (node).

A more simplified statistic of settle-
ment linkage similarity may be defined
by taking the link distribution data as
nominal (binary) rather than ordinal. The
total number of observed links between
different settlement classes may be ex-
pressed as a proportion of the total num-
ber of expected links between different

settlement classes (2A 3
1

5, PiP;). This
>t .
gives an index comparable to Geary’s
contiguity coefficient and has the same
interpretation. We will denote this index

by c¢o. Note that

_ f(X)

C
0 o

when wy; = {0,1}. The values of this index
will be less extreme than the Geary coeffi-
cient because the links are biased in favor
of big differences in settlement classes;
this is ignored by the nominal approach.
To test the significance of this cofficient a
chi-square test may be used with the data
grouped into two classes only—links be-
tween settlements of the same type, and
links between dissimilar types.

SELECTED CANADIAN SETTLEMENT
SyYsTEMS

The above methods of measuring
nodal linkage similarity (affinity) in a net-
work are now applied to four selected
Canadian settlement systems; for pur-
poses of illustration two hypothetical sys-
tems representing linkage extremes are
also included. A link between two settle-
ments is defined by a direct road connec-
tion. Five settlement size classes are de-
fined and the distributions given in Table
1. The observed and random link type
distributions are shown in Table 2.

Table 3 presents the linkage similarity
index (J1(X)—writtenas L.S.1.), Geary’s ¢

TABLE 1

SETTLEMENT SIZE DISTRIBUTION
IN SELECTED SYSTEMS, 1976

50-249 250-999
System R H
Prairies® 275 189
Cape Breton Island . 218 47
Newfoundland 196 179
Prince Edward Island 319 41
Hypothetical A 275 189
Hypothetical B 275 189

1000-2499 2500-9999 10000+
\% T U Total

45 35 10 554

9 5 2 281
49 20 4 448

7 4 1 372
45 35 10 554
45 35 10 554

* 16 Federal Electoral Districts in Southern Alberta and Saskatchewan.
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TABLE 2

LINK TYPE DISTRIBUTIONS

Prairies Cape Breton Newfoundland  Prince Edward Hypo- Hypo-
Type Island Island thetical A thetical B
O E O E O E 0] E O E O E
R-R 192 243 718 618 131 146 464 436 709 243 0 243
R-H 286 334 208 267 204 266 74 112 1 334 0 334
R-V 91 79 28 51 48 73 0 19 0 79 0 7
R-T 89 62 14 28 26 30 0 11 0 62 0 62
R-U 31 18 0 11 8 6 2 3 0 18 707 18
H-H 94 115 24 29 144 122 8 7 187 115 0 115
H-V 82 55 14 11 106 67 7 2 1 35 0 55
H-T 52 42 5 6 35 27 6 1 0 42 0 42
H-U 24 12 4 2 9 5 6 0 0 12 189 12
V-V 7 6 1 1 21 9 3 0 43 6 0 6
V-T 16 10 4 1 14 7 6 0 1 10 0 10
V-U 6 3 5 0 6 1 6 0 0 3 45 3
T-T 10 4 1 0 4 2 3 0 33 4 0 4
T-U 5 2 1 0 3 1 6 0 1 2 35 2
u-u 0 0 0 0 2 0 0 0 9 0 9 0
Total 985 985 1027 1027 761 761 591 591 985 985 985 985

TABLE 3

MEASURES OF NODAL AFFINITY®

LSI®

(i)
Prairies 0.055
Cape Breton Island -0.434
Newfoundland -0.030
Prince Edward Island -0.337
Hypothetical A ~1.000
Hypothetical B 1.000

L.SI° c° o

{0.1}

0.177 1.350 1.105
-0.251 0.557 0.751
-0.050 0.970 0.950
-0.241 0.663 0.764
-1.000 0.002 0.007

1.000 7.148 1.582

? All values except the four for Newfoundland are significant at the .01 level.

20,0 = random arrangement.
€1.0 = random arrangement.

coeflicient, and the ratio of total observed
to total expected links between different
settlement classes (co). Note that the link-
age similarity index is shown for two dif-
ferent weighting schemes: wy; = (j-i)* and
wy = {0, i=j; 1, i#{}. These two weighting
schemes are directly comparable to the
ordinal {¢) and nominal (¢o) methods of
treating the data, respectively. Recall
that a random arrangement of size classes
is indicated by a value of 0 in the case of

the linkage similarity index and by 1 for
the Geary and ¢ indices.

Table 3 indicates that in the Prairies
there is a general tendency for dissimilar
classes of settlements to be linked to one
another. (If the Prairie network is dis-
aggregated into Alberta and Saskatche-
wan networks, the tendency is stronger
in the latter.) In the selected Atlantic
Canada systems, the tendency is for simi-
lar classes of settlements to be linked;

(]
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Newfoundland most closely approaches
the randomly derived distribution of
linkages. The contrast in the settlement
topology between the Atlantic and Prai-
ries regions seems intuitively reasonable.
One would expect therelatively isotropic
Prairies landscape to manifest an hier-
archical spatial distribution of settle-
ments (links between dissimilar nodes)
while such an arrangement would not be
as readily expected in the case of the pri-
marily linear coastal development of the
Atlantic region, with its generally more
homogeneous settlement sizes.

CONCLUSION

Two general methods of measuring
one aspect of the topological structure of
a settlement system have been presented
—one based upon a linear programming
framework and one utilizing the concept
of spatial autocorrelation. Although de-
rived in different ways, these measures
have been demonstrated to be closely re-
lated to one another. Specifically, when
the weighting scheme wi; = (j—i)® is em-
employed, linkage similarity index J2(X)
is equivalent to Geary’s ¢ coeflicient;
J1(X) then represents a scaling of the
index such that the final value falls within
the range -1.0 to 1.0, with 0.0 denoting a
random arrangement. When the data are
regarded as nominal (wiy = {0,1}), the
linkage similarity index represents a
scaled version of the ¢; measure. The
general limits upon the value of the link-
age similarity index provide a useful ad-
vantage over the autocorrelation mea-
sures whose limits depend upon the
values and arrangement of the data.

The two weighting schemes that have
been employed were selected because of
their direct comparability to the weight-
ings implicit in the autocorrelation in-
dices ¢ and cg; alternative schemes could
be considered and may yield further in-
teresting and useful results.

The measures of linkage similarity
have been applied to four selected Cana-
dian settlement systems and demonstrate
a basic difference in the topological struc-

ture of the Prairie and Atlantic regions,
the former being characterized by a
tendency for settlements of dissimilar
size to be linked and the latter by a ten-
dency for similar sized settlements to be
linked. This tendency is stronger for
Cape Breton and Prince Edward Islands
than for Newfoundland. These findings
are in agreement with expectations that
may be derived from central place the-
ory concerning the settlement topology
of the two regions; an hierarchical ar-
rangement is found in the relatively iso-
tropic area but not in the coastal region.
Although the methodology developed
here has focused upon the simple road
connectivity between classes of nodes
distinguished on the basis of population
size, its extension may prove useful and
instructive. For example, the differentia-
tion of road connectivity on the basis of
capacity, the use of other types of con-
nectivity, or the introduction of other
criteria for assigning nodes to classes
might be considered. In particular, the
functional differentiation of settlements
may provide further insight into the cen-
tral place hierarchy. Finally, this method-
ology has implications for the broader
questions of the role of nodal affinity in a
socioeconomic system and the structural
changes in such a system over time.
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