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Language. Subroutine PRESC is written in ANSI Fortran.

Description and purpose
In the last few years a considerable volume of literature has accumulated on the
zoning or aggregation problem. Its effects have been analyzed in the context of
spatial interaction (Masser and Brown, 1978), location allocation (Goodchild, 1979),
and ecological correlation (Openshaw, 1978). Each field, and particularly the last,
recognizes the importance of the spatial autocorrelation of parameters between zones
in controlling the severity of aggregation effects. In general, if neighbouring zones
have similar characteristics then aggregation effects will be relatively weak.

it is assumed that autocorrelation will be expressed by some form of the CIliff and
Ord (1973) generalization of the Moran statistic
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where

n is the number of zones,

x; is the value of variable x in zone i, and
wy is a weight.

The weights may take the form of a binary matrix, that is, the ith, jth element
takes the value 1 if { and j share a common boundary and 0 otherwise, or some
decreasing function of the distance between i and j, or an increasing function of the
length of common boundary. Whereas the first may be simplistic, the advantages of
the latter two have to be weighed against the arbitrariness of any specific choice of
functions. The weights may also be standardized. such that ;Wii = 1.

Although it is easy to measure the spatial autocorrelation of an observed set of
data, the relationships between the index and various stochastic processes are usually
complex. CIliff and Ord analyzed two such processes in developing null hypotheses
for I'; in the N process zone values are sampled randomly from a Gaussian distribution
estimated from the observed data, whereas in the R process the observed zone values
are randomly permuted.

Cliff and Ord (1973, Appendix 1) were able to simulate positive autocorrelation by
the following autoregressive process. Let the value in zone i be influenced by the
values in other zones in a linear manner: viz : :

X = pLugX; T,
J
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where

vy is a weight,

u; is an error term, having a Gaussian distribution with zero mean, and

p is a constant parameter indirectly determining the strength of autocorrelation.
In matrix notation

x=UA-pv)lu.

It is clear that a realization of the process can be generated by obtaining a vector u
and solving for x; however, I' could not be controlled directly since its dependence
on p, and also on w and v, was not understood. :

Openshaw (1978) was concerned with the effects of spatial autocorrelation on
bivariate ecological models of the form

yi=atbx;+e;,
where a, b are model parameters, and e; is an error term.
To analyze or simulate this problem would require a stochastic process capable of
producing two variables with prescribed autocorrelations, I, and I;,, and a prescribed

correlation ny. In the apparent absence of a suitable model Openshaw treated the
problem as the minimization of a function of 2x variables; find x and y to minimize

Fx,p) = (& — L)+ (L, — B+ (52 +(55)? +(K3)? +(K5)?
+(ny —R;y)2+(a—a*)2+(b—b*)2 s

where
* indicates an observed value of a parameter,
X,y are positive,

S and K denote skewness and kurtosis, respectively, and

L,L, R,,, a, and b are prescribed.

The skewness and kurtosis are introduced to give the simulated values a near Gaussian
distribution. Openshaw and Taylor (1978) reported that with a quasi-Newton
procedure the minimization for 99 zones required 920 seconds of IBM 370/168 time.

A recent paper by Haining (1978) explored the equivalences between autoregressive
and moving average models. In the latter case a vector u is generated, usually by
sampling a Gaussian distribution, and some sort of spatial averaging, equivalent to a
filter, is applied to obtain x. The characteristics of the filter determine the auto-
correlation structure of the data. However, Haining discussed processes on a lattice,
and it is not clear how they can be adapted to give useful results for irregular areas,
particularly when x; is an average or summation over a finite area, rather than a point
sample.

It is clear that although this is an important and exciting area the literature on
spatial processes has not advanced to the point where interzonal autocorrelation can
be readily simulated by realizing a stochastic process, particularly in the case of
Openshaw’s bivariate problem. The purpose of the present paper is to describe a
method of simulation which was developed for the same purpose as Openshaw’s, to
study the effects of autocorrelation on spatial models, and which seems to possess a
number of important advantages: it is much faster, and treats many of the required
parameters as constraints rather than as parts of the objective function. It differs in
that the specified parameters a, b, and R,, define a population from which actual
values are sampled, so that for small samples the values obtained may differ
substantially from those specified. It may be necessary to run the procedure a
number of times, therefore, and select the data with the best results.
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Examples

Univariate case Suppose we require a vector x sampled from a Gaussian distribution,
mean u, and standard deviation g, and with autocorrelation I,. All of the requirements
except the last can be met by one of a number of standard methods for sampling the
Gaussian distribution. We may therefore concentrate on how these values should be
arranged among the zones so as to yield the required ;. Clearly one possibility is to
examine all n! arrangements. Any systematic search of the combinatorial problem is
undesirable since it is likely to create systematic biasses in the eventual solution. The
proposed method is therefore in a sequence of steps as follows:

Step 1 Assign values to zones and compute Iy .

Step 2 Select a random pair of zones.

Step 3 Compute the change in I if the values in the zones are swapped.

Step 4 If the new I, is closer to the target, make the swap. If not, go to step 2.
Step 5 If the new I, is within a tolerance of the target, or if too many unsuccessful
tries have been made, stop. If not, go to step 2.

The program has three modes of operation in the univariate case. In mode 1,
values are sampled from a Gaussian distribution. In mode 2 the user supplies a vector
of values, which are then randomly permuted among the zones before the swap
process begins. Mode 3 is as mode 2 except that the permutation step is omitted.

Bivariate case Because the correlation between the two variables, and also the a and b
coefficients, are all invariant under the spatial rearrangement of pairs of values, an
approach similar to that for the univariate case can be used for the bivariate case.
Values of x are input or generated in one of three ways, corresponding to modes 1, 2,
and 3 above, but denoted in the bivariate case by modes 4, 5, and 6, respectively. A
second variable y is then generated from the values of @ and b supplied by the user,
and by sampling an error term from a Gaussian distribution of zero mean and standard
deviation calculated from the R,, specified. The criterion in step 4 for the bivariate
case is that the greater of the differences between I,-and [, and their respective targets
be less than before.

General case Let z; denote the value of x; which has been adjusted to zero mean,
z; = x;—X. Rearrangement of values can only change the term iij,-zjw,-,- in the

expression for I;. When zones m and # are swapped, the change in this term is given by
A = 2000 = Xn) (S — S ™ XnWam + XWam)
where S, = % X5 Winge -

Thus step 4 can be reduced to a simple test of A,,,. In step 5 the values of the
vector S must be updated, as well as x,, and x,,.

The subroutine given below provides storage for the vectors x and y, and also S,
and for the matrix of weights w. In cases where the weights matrix is sparse and core
storage is at a premium, the program might be rewritten to store only the nonzero
weights, together with a system of pointers. ‘

Structure »

Subroutine PRESC(N, NMAX, W, MODE, XTARG, NTRYM, DSEED, XAVE, XSD,
XIN, YTARG, A, B, RXY, IWRITE, XAUTO, YAUTO, NSW, X, Y, IFAULT, SX,
SY, SRT)

Arguments
All arguments except DSEED are single precision with type in accordance with the
usual Fortran naming convention. DSEED is double precision.
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Inpu

N -  The number of zones. :

NMAX * The dimensions of W in the calling program.

W A matrix of weights, with dimensions N by N. W(l, J) is the influence
s ‘of j at i. The diagonal terms should be zero.

MODE The mode of operation, with range 1 to 6 (see Examples).

XTARG The target for x autocorrelation.

NTRYM The maximum number of unsuccessful tries at a swap.

DSEED A double precision seed for the random number generators (see

Auxiliary algorithms below).
XAVE, XSD The mean and standard deviation of Gaussian distribution sampled for x
(modes 1 and 4 only, dummy otherwise. See Qufput).

XIN A vector of length N containing x values (modes 2, 3, 5, and 6 only,
‘ dummy otherwise). ~

YTARG The target for y autocorrelation (modes 4 to 6 only, dummy
otherwise).

A, B, RXY The parameters for the regression model (modes 4 to 6 only, dummy
otherwise). '

IWRITE If greater than O, this logical unit is used to print useful statistics.

Output ' '

XAVE, XSD The sample mean and standard deviation of x.

XAUTO The final autocorrelation for x.

YAUTO The final autocorrelation for ¥ (modes 4 to 6 only, dummy otherwise).

NSW The number of successful swaps made.

X The final values.

Y The final values (modes 4 to 6 only, dummy otherwise).

IFAULT =1 If execution terminated because NTRYM has been exceeded.

= 0 For normal termination.

Working space
SX, SY, SRT Vectors of length N.

Auxiliary algorithms

The subroutine calls two external routines, GGUBS and GGNML (IMSL, 1979),
which generate vectors of independent random numbers with uniform (random
numbers in the range 0 to 1-0) and Gaussian (random normally distributed numbers
with mean 0-0 and standard deviation 1-0) distributions respectively. Users can
substitute their own subroutines here, and use whatever random number procedures
they have available.

Restrictions
The positive and negative limits of I, and I, vary widely, and this depends on the
pattern of weights. The expression for I can be manipulated to give

n Z,(z,-2 ;wﬁ) nizj (6 = %) wy
L = - - — —.
x Zw,, Zz? 2;wij ;z,-z

i i

The second term is similar to the Geary coefficient, and becomes very small when I,
approaches its upper limit. The first term is a weighted average which tends to 1 if
)j:w,-,- is constant, that is if each zone has the same total weight or if the weights are

standardized. The upper limits for the data sets in table 1 varied from +0-9 to +1-4.
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If the user tries to force I, beyond these limits the program will terminate because of
the maximum set for the number of tries. In the bivariate case the limits for I, I,
and R,, are interdependent, and again depend on the distribution of ]ZWir

Time

Two examples of simulations are shown in figure 1. Both were generated by means of
mode 1, which gives a Gaussian distribution, and with prescribed autocorrelations
of 0-75 and —0-25. Both targets were reached to within three decimal places.
Contiguity weights were used. In the positive case the process gives rise to a prominent
peak, because similar values tend to be located close to each other. The location of
the peak on the southern edge of the city is a matter of chance—in reality, of course,
many parameters are most intense in the central business district. The negative case
shows a checkerboard pattern of low and high values.

(b)

Figure 1. Simulated spatial autocorrelations for London, Ontario Census Tracts (n = 51) for
autocorrelations of (a) +0-75 and (b) —0-25.
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Table 1 shows a sample of performances for various sizes of problems of the
univariate case, where contiguity weights and a Gaussian distribution were used.
The n = 22 example consisted of the Planning Districts of London, Ontario; the
others are Census Tract maps of London, Edmonton, and the west part of Montreal
respectively. Times were approximately 0-25 milliseconds per try on a CDC Cyber
73/14, independently of n, which allows all these problems to be solved in much less
than a second.

Table 1. Tries for various target autocorrelations, univariate case, and contiguity weights.

n I=+402 I.,=+05 [I,=-02 L=-05
22 20 35 50 350
51 10 70 60 450
79 50 300 20 230
165 50 210 60 750
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Subroutine PRESC

SUBROUTINE FRESC (NyNMAXs Wy MODE» XTARG» NTRYMy DSEED » XAVE ¢ XELty XINy
LYTARGy Ay ByRXY y TWRITE » XAUTO» YAUTO s NSW» Xy Yy IFAULT » EXy SY » SRT)

[

C THIS ROUTINE SIMULATES AUTOCORRELATION FOR AGGREGATE DATA
C

C ARGUMENTS

C ON INFUT

C N NUMRER OF ZONES

[ NMAX DIMENSIONS OF W ARRAY IN CALLING ROUTINE

C W MATRIX OF WEIGHTSy DIMENSIONS N RY N. W(I»J) I8

C THE INFLUENCE OF J AT I

C MODE MODE OF OFERATION, RANGE 1 TO &

C XTARG TARGEY FOR X AUTOCORRELATION

C NTRYM MAXIMUM NUMRER OF UNSUCCESSFUL TRIES AT A SWAF

C DSEED DOURLE PRECISION SEED FOR RANDOM NUMBER GENERATORS
C XAVE Y XSED MEAN AND STANDARD DEVIATION OF GAUSSIAN

c DISTRIBUTION SAMPLED FOR X (MODES 1 AND 4 ONLY» DUMMY
G OTHERWISE)

C XIN VECTOR OF LENGTH N CONTAINING INPUT X VALUES

C (MODES 2y 3y 5 AND 6 ONLY» DUMMY OTHERWISE)

C YTARG TARGET FOR Y AUTOCORRELATION (MODES 4 TO é ONLY»
C DUMMY OTHERWISE

C AsByRXY PARAMETERS FOR THE REGRESSION MODEL (MODES 4

C TO 6 ONLY» DUMMY OTHERWISE)

C TWRITE IF GREATER THAN 0y USE THIS LOGICAL UNIT TO

C PFRINT USEFUL QUTFUT

C ON RETURN

: XAVEy XS SAMFLE MEAN AND STANDARD DEVIATION FOR X

XAUTO FINAL AUTOCORRELATIONS FOR X

YAUTO FINAL AUTOCORRELATIONS FOR Y (MODES 4 TO & ONLYy
DUMMY OTHERWISE)

NSW NUMRBRER OF SWAFS MADE

X FINAL X VALUES

Y FINAL Y VALUES (MODES 4 TO 6 ONLYs DIUMMY OTHERWISE)

IFAULT 18 FAULT NUMRER

WORKING SFACE

6Xy8YySRT VECTORS OF LENGTH N

FAULTS
IFAULT =0 ON NORMAL TERMINATION
=1 IF EXECUTION TERMINATED BECAUSE NTRYM EXCEEDEDR

AUXILIARY ALGORITHMS

GGUBS AND GGNML ARE (IMSL) ROUTINES TO GENERATE VECTORS OF
INDEFENDENT RANIOM NUMBERS WITH UNIFORM AND' GAUSSIAN
DISTRIBUTIONS RESFECTIVELY

ooOOcOooonOooOOnNGoOoon

DIMENSION XCON) v Y(ND 2 SXCND y W INMAX s NMAX) y SRT(NI ySY (N) 2 U(2) y XIN(ND
DOURLE FRECISION DSEEDyDSEERO

DIFFM=0

LSEENO=NSEED

IFAULT=0Q
IF(MODEJ+NE.1.AND.MODE.NE.4)G0 TO 2

G MODE=1 OR 4., SAMPLE X FROM A GAUSSIAN DNISTRIBRUTION

CALL GGNML(DSEEDyNy XD
RO 1L J=1sN
1 XCH =X RXEIXAVE
GO 1O 7
2 IF(MODE.EQR,3.0R.MODEJEQ.8)GO TD 5

MODE=2 OR &, GENERATE A VEUTOR OF UNIFORM RANDOM NUMRERS
AND SORT X

GO0

CALL GGURS (NSEENyNy SRT)
D0 4 J=1s+N
SMIN=2.0
[0 3 K=1yN
IF(GRT(R) LGT.SMINYGO TO 3
SMIN=ERT (K)
KA=K
3 CONTINUE
X =XIN(KA)




1080 ) ) M F Goodchild

4

GRT(KA)=Z.0
GooTe 7

C MODE=3 OR 6

5 N0 6 J=1sN
& XSy =XINCD)
C
C COMPUTE THE SAMFLE MEAN AND STANDARD DEVIATION
[
7 FN=N
SUM=0.0
SUMSA=0,0
D0 8 J=1sN
SUM=5UM+X ()
8 SUMSR=SUMSQR+X (Jr%kx2
XAVE=SUM/FN
X8N=8RRT (SUMSQA/FN-XAVEXX2)
IFCIWRITE.GT.0XWRITE(IWRITEs27)MODE s XTARGy NTRYMy DSEEDO » XAVE »
1IXBUy (Jr XD p I=19N)

REDUCE X TO ZERO MEAN

[z Ry Ry

0o 9 J=1sN
9 X(Jry=X(J)-XAVE

COMPUTE SUMS AND INITIAL AUTOCORRELATIONS

aaon

GUW=0,0
no 10
8X )
00 10 K=1sN
GW=GWHW Iy KD
1O XN =8XCEXIRIKW I KD
XCON=1 .0/ CSWKXGINKR2 )
XGUM=0.0
0 14 J=1lsN
11 XSUM=XGUMEX (JIXREX )
XAUTO=XSUMXXCON
I ! TELGTOMWRITECTWRITE Y 28 XAUTO
LT.4260 TO 16

™
G MOLE=4 TO &. GENERATE Y FROM THE REGRESSION MODEL
[

SIXBXSQART (14 O~RXYXX2) /RXY

. GONML (DSEED s No Y

JIKGEFA+BR (X (I HXAVE)
UM+Y ()

BUMEREY () %k2

SUM/FN
QRT(SUMEQ/FN-YAVEXX2)

Y ~YAVE

(IN==1, 4 0/ (SWXKYSDXX2)
0o 14 J=1sN
SY D =0.0
Do 14 K=1sN

14 SY () =8Y (DY IRKIKW(IsRY
YBUM=0,0
0o 1% J=1sN

18 YSUM=YSUM+Y{JIRSY (D)
YAUTO=YSUMXYCON
TFCIWRITE BT+ O3WRITECIWRITE» 2?)YTARGyAvRyRXY v YAUTOy
LGSy SRT (D) »J=1 s ND

REGIN SWAF ALGORITHM

e Eeiy]

3T 3IVEFFM=AMAXL (XDTFF y YDIFF)
SHTLOIWRITECIWRITE y 30)
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17 CALL GGUBS(DSEEDN,2sU)

¥ NT(UCLIRFNY+1
IN=INTCUC2XFND 1
NTRY=NTR

IF(NTRY. NTRYM)YBO TO 18
IFCIMGEQLTINOGD TO L7
BELX=2, 0K (XCIND - X CIMI )R CEX CIMY ~8X CINI - X CINIRXWCIMy IND +X(TM)
1RWCTINY THY D
XGUM2=ASUMHDIELX
XNDBIF BS (XSUMIXXCON-XTARG)
IF(MOUE.GT.3)60 TO 19
TFOANDIFF LT WXDIFF)YGO TO 20
GO TOQ 17
18 TF(IWRITE.GT.OWRITE(IWRITEy 31ONTRY
IFAULT=1
GO TO 24
19 DELY=2, 0KCY CINY =Y CIMI D R(BY CIMI ~8Y (TN ~Y CINY KW CIMy INY Y (TM)
LXWCINY IMD)
YEUM2=YSUM+IELY
YDIFF=ARS (YSUM2XYCON~YTARG)
DIFFNM=AMAXL (XNDIFF» YIIIFF)
IF(DIFFNM.GE.DIFFMIGO TO 17
20 NSW=NSW+1
XDIFF=XNDIFF
XGUM=XEUM2
IF(MODE«GT 3> DIFFM=DIFFNM
IF (MODE.GT.3)>YSUM=YSUM2

UFDATE THE SUMS AND MAKE THE SWAFS

G000

D0 21 K=1sN .
21 SXR)Y =8X (K + WKy TM) ~W Ry TN IR (X CINY X (IMY)
T=X (LM
XCIMY=XCIN)
XCIND=T
XAUTO=XSUMXXCON
YF(MODE . LE+3+AND, TWRITE.GT DIWRITECIWRITE » 32) IMy INs NTRY » XAUTD
IF(MODE.LE.3)G0 TO 23
D0 22 K=1sN
22 SY ) =8Y (KY+ (W Ky ITMY~WCKy IN) IRCY CINY =Y (TM) )
Te=Y (IM)
YIMI=Y(IN)
YCINY =T
YAUTO=YSUMXYCON
IFCIWRITE GT.OWRITECTWRITEy 32) IMy INyNTRY » XAUTO» YAUTO
23 NTRY=-1 )
TF(MODELLE .3 ANIL XDIFFL.GT.0.0001)60 TO 17
TF(MODRE.GT 3 ANILOTFFM. BT 0. 0001060 TO 17

c FRINT FINAL RESULTS

24 TF(IWRITE.GT.0)RRITE (TWRITE » 33)NSW
Do 26 J=1sN
X=X (J)Y+XAVE
TE(MODE . GT,.3,60 TO 25
IFCIWRITE .GT.OXWRITE(IWRITE »34) 0y X2
GO 1O 26
25 Y=Y (I +YAVE
IF(IWRITE.GT.OIWRITECIWRITE s 340 Js XC ) 9 Y (I
26 CONTINUE
RETURN

27 FORMAT(46HOPROGRAM TO GENERATE SFECIFIER AUTOCORRELATION/SHOMOLE
113/13H TARGET FOR X»F8.4/28H LIMIT TO UNSUCCESSFUL TRIESyIS/

2294 RANDOM NUMBER GENERATOR SEEDsD12.4/12H SAMPLE MEANYEL1Z.4/
326H SAMFLE STANDARD NEVIATIONsE12.4/13HOINITIAL DATA/
4(IS5yE12.4))

28 FORMAT (ZO0HOINITIAL MORAN AUTOCORRELATIONsF8.4)

29 FORMATC(13HOTARGET FOR Y,F8.4/8H MODEL AYE12.4s6H AND EB,E12.4/
112H CORRELATION,F8.4/26H INITIAL Y AUTOCORRELATION:F8.4/
217HOINITIAL Y VALUES/(ISyE12.4))

30 FORMAT(LHOs 19Xy 7HUNSUCC. /46H SWAF M WITH N TRIES AUTOCORREL
1ATION(S))

31 FORMAT(17HOXXXSTOFFER AFTER»IS5»34H UNSUCCESSFUL TRIES AT IMPROVEME
INT)

32 FORMAT(3I8,2F10.4)

33 FORMAT (1SHOFINISHED AFTER»IS5r6H SWAFS/13HOFINAL VALUES)

34 FORMAT(ILO»2EL2.4)

END




