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Abstract :
Spatial decision support systems (SDSS) are designed to make complex resource
allocation problems more transparent and to support the design and evaluation of
allocation plans. Recent developments in this field focus on the design of allocation
plans using optimization techniques. In this paper we analyze how uncertainty in
spatial {input) data propagates through, and affects the results of, an optimization
model. The optimization model calculates the optimal location for a ski run based
on a slope map, which is derived from a digital elevation model (DEM). The uncer-
tainty propagation is a generic method following a Monte Carlo approach, whereby
realizations of the spatially correlated DEM error are generated using ‘sequential

- Gaussian simulation’. We successfully applied the methodology to a case study in
the Austrian Alps, showing the influence of spatial uncertainty on the optimal loca-
tion of a ski run and the associated development costs. We also discuss the feasibility
of routine incorporation of uncertainty propagation methodologies in an SDSS.

1 Introduction

It has been demonstrated in practice that simple and straightforward optimization tech-
niques linked to a spatial decision support system {SDSS) are effective for designing land
use allocation alternatives {e.g. Grabaum and Burghard 1998, Cova 1999). These
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Figure 1 SDSS system with decision framework and supporting techniques

techniques can be integrated in the decision framework of an SDSS (e.g. the framework
for analysis, Figure 1), and activated through a single button or slide bar. Although
optimization problems sometimes are a gross simplification of ‘real world’ allocation
problems, their results do supply a decision-maker with quick, and to a certain extent,
reliable overviews of feasible and attractive solutions.

Above it says ‘certain extent’, because the solutions obtained refer to simplified
problems, and they also may suffer from errors and uncertainties. Uncertainty in this con-
text may be referred to as uncertainty in the input data, models, data interpretation and
decision rules, to name a few (e.g. Brunet and Cornelis 1999, Cleaves 1995, Heuvelink
1998, Goodchild 2000, Mowrer 2000). The role of uncertainty in spatial decision-
support. has been pointed out by 2 number of studies, and although we acknowledge all
forms of uncertainty as important, in this paper we restrict ourselves to the uncertainty
of spatial input data. More specifically, we consider the propagation of uncertainty in
spatial (GIS) data that affects the result of an optimization model for land use allocation.

The need for uncertainty analysis techniques within the context of spatial decision-
support has been addressed by a number of studies. Hunter and Goodchild (1995 ) write
that .. . what is needed however is to widen the current platform of error modeling, to
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embrace the treatment of error from a management (or user oriented) perspective’.
Furthermore, Malczewski (1999) and Agumya and Hunter (1999) state that the emer-
gence and growth of SDSSs has promoted the use of GIS data predominantly in a
conceptual way, whereas most GIS applications and subsequent uncertainty manage-
ment lack the functionality to adequately support ill-structured problems. Moreover,
when referring to the decision-makers themselves, Agumya (1999) states that . .. it is
recognized that although GIS data is most frequently used in operational activities, its
use in higher-level decision-making is more decisive and therefore data uncertainty more
harmful to the decisions being made’.

It is for this management perspective (Hunter and Goodchild 1995), for these ill-
structured problems (Malczewski 1999, Agumya 1999) and for these decision levels
(Agumya 1999) that we address the need for assessing uncertainty propagation within
an SDSS. Any uncertainty propagation technique applied in this context should there-
fore meet the requirement of being reliable, robust and preferably simple, considering
the complexity of the resource allocation issues, the often large amounts of data and
great diversity in the users involved.

Monte Carlo simulation is a straightforward uncertainty analysis technique, which
has been applied in a number of studies (e.g. Lee et al. 1992, Dungan et al. 1993,
Journel 1996, Mowrer 1997, Fisher 1998, Heuvelink 1998, Kyriakidis et al. 1999).
In this paper, we conduct an uncertainty analysis of an optimization model by applying
Monte Carlo simulation using a geostatistical technique known as sequential Gaussian
simulation (SGS) on the input data of the model. The objective is not to present a
thorough analysis of the principles underlying geostatistics, as these are well cited in the
literature (e.g. Isaaks and Srivastava 1989, Cressie 1991, Goovaerts 1997). But since the
optimization model itself will be used within an SDSS for complex resource allocation
issues involving non-technical users, the emphasis lies on the application. Therefore, the
evaluation of the uncertainty analysis will be performed with respect to its applicability
within an SDSS, by studying the following aspects:

1. Implementation and Reliability. This involves the implementation of
Monte Carlo simulation using SGS and the exploration of the number of Monte
Carlo realizations required to obtain reliable outcomes for resource allocation
alternatives.

2. Robustness. Performance of a sensitivity analysis by changing the parameters of
the variogram (sill, range) used in SGS and the analysis of how these variations
affect the results of the optimization model.

3. Significance and Simplicity. Discussion of the practical use of uncertainty
analysis within an SDSS.

These three aspects are illustrated within the context of a case study in the Austrian
Alps, where the main problem is to allocate a new site for a ski run. The case study
involves the use of an existing SDSS and represents a typical example of a complex
resource allocation problem.

2 Methodology

2.1 Uncertainty Analysis
“Uncertainty in spatial data is used to denote the lack of knowledge of the
true value or the value that would be discovered if one were to visit the field
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and make an observation using a perfectly accurate instrument’ (Hunter and
Goodchild 1997).

With this definition in mind, it will be clear that almost all data stored in a GIS are
uncertain to some degree. Furthermore, when the data stored in a GIS database are used
as input to a GIS operation, then the uncertainties in the input will propagate to the
output of the operation (note that from here, we use ‘error’ to express uncertainty in
the input data). Consequently, when the propagation of the error is not adequately
recorded, it becomes difficult to evaluate the accuracy of the output of the operation
{Goodchild et al. 1992, Heuvelink 1998, Heuvelink 1999). For instance, a digital eleva-
tion model (DEM) will contain various kinds of error, such as measurement error,
interpolation error, etc. These uncertainties will propagate when the DEM is used to
compute derived products such as maps of slope, drain direction or irradiance.

2.2 Error Model

The uncertainty in a quantitative spatial attribute, such as a DEM, is typically summar-
ized by a mean (systematic error or bias) and a variance {random error). Both can be
estimated from a comparison of values of the attribute with independently collected
validation data. Assuming bias is zero or corrected for, the variance, or rather its square
root the standard deviation, may be estimated by the root mean squared error (RMSE).
The RMSE is, however, an average value for the whole DEM and does not distinguish.
areas that are more or less uncertain. Furthermore, it does not assess spatial autocorrela-
tion as present in most spatial data (Goodchild 1986). For instance, DEM values and
the errors in it are most often positively correlated when measured at locations that are
not too far apart (e.g. Hunter and Goodchild 1995, Fisher 1998, Goodchild 2000).

In order to perform an assessment of the propagation of error, we first define an
error model of an uncertain attribute A(x) at some location x € D as:

Alx) = b(x) + Z(x) forallx e D ‘ (1)

where A(x) is the ‘true’ value of the attribute, b(x) is our representation of it and Z(x)
is the error. Due to uncertainty, the truth is unknown to some degree, and so. it is
represented by a random stochastic variable, which is characterized by a probability
distribution. The difference between the truth and our estimate of it is given by Z(x),
which can be modeled as a spatially correlated random field, following:

Z(x) = u{x) + g(x) forallxe D 2)

Here, p(x) is the mean of Z(x) and represents the systematic error or bias, which as
stated before, we take to be zero. The random field £(x) represents the non-systematic
-or random error. We assume £(x) to be second-order stationary and isotropic. It has
zero mean and variance ¢%(x), and its spatial auto-correlation is characterized by the
(semi-) variance. We further assume that the semivariance is only a function of the
distance [ 4 | (or ‘lag’) between locations (e.g. Hunter and Goodchild 1995, Heuvelink
1998, Burrough and McDonell 1998). It is defined as:

n(ihl) = szwg - Zix + b)Y (3)

where E stands for mathematical expectation. A graph of the semi-variance against
distance is known as the (semi-) variogram.
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2.3 Uncertainty Propagation with Monte Carlo Simulation

There are a number of methods for tracing the propagation of quantitative error in
spatial operations. Examples are Taylor series approximation, Rosenblueth’s method
and Monte Carlo simulation (Hunter and Goodchild 1995, 1997; Heuvelink 1998;
Nackaerts and Govers 1999).

The Monte Carlo method is attractive for its general applicability and ease of imple-
mentation. It involves re-running an analysis many times. Each time the analysis is
repeated, a (stochastic-) variable is simulated from its probability distribution and used
as input for the operation. This whole process is usually repeated between 500 and 1000
times — but sometimes more and sometimes less — producing equally likely results, from
here on referred to as ‘realizations’. These realizations are stored and finally subject
to an analysis of deriving the mean and variance across all realizations. The Monte
Carlo method is often used as a method for quantifying the propagation of data base
uncertainty through different operations. An operation could be a model, such as an
optimization model using a DEM or slope map as input. The Monte Carlo method does
not require knowledge of how the data are used in an operation and therefore this
quality makes it suitable for a broad class of applications (Mowrer 1997). However, the
computational load in terms of data storage and CPU time can be a major drawback
(Heuvelink and Burrough 1993, Heuvelink 1998, Agumya 1999).

Monte Carlo applications for assessing the propagation of DEM uncertainty can be
found by Fisher (1991a, b, 1992, 1998), Goodchild et al. (1992), Lee et al. (1992),
Journel (1996), Mowrer (1997), Heuvelink (1998), Kyriakidis et al. (1999) and Holmes
et al. (2000). Other examples of Monte Carlo error propagation analyses are found by
Oliver et al. (1989a, b}, Dungan et al. (1993), Gotway (1994), De Genst et al. (2001)
and Heuvelink and Burrough (2002). :

2.4 Application to DEM Uncertainty Analysis

In a spatial context, the Monte Carlo method requires the stochastic simulation of uncer-
tain spatial attributes. Sequential Gaussian simulation (SGS) is a basic technique used
for stochastic simulation in a situation where errors are normally distributed (Goovaerts
1997). SGS is, moreover, generically applicable to a vast number of applications ( Journel
and Deutsch 1992, Hunter and Goodchild 1995, Burrough 1999, Mowrer 2000).

The principle of Monte Carlo analysis on a spatial model using an uncertain DEM
and a set of Ground Control Points {GCPs) as input, works as follows. We calculate the
error at each of the GCP locations by subtracting the DEM value from the GCP value.
To derive the error Z at each location x in the area of interest, we apply a sequential
Gaussian simulation. Next, the spatial model is run on the DEM realizations. The
procedure can be decomposed in three stages (Figure 2):

Stage A: Variogram modeling .
The first Stage involves modeling the variogram of the error field Z(x). First, an experi-
mental variogram is computed from the errors observed at the GCPs. Next, we fit a
function to the experimental variogram. The shape (e.g. a spherical, exponential or
Gaussian) is chosen such that it optimally fits the experimental variogram.

The variogram model is controlled using the characteristic variogram parameters,
i.e. the nugget, sill and range. The nugget is the variance of measurement errors combined

© Blackwell Publishing Ltd. 2003




216 J €] H Aerts, M F Goodchild and G B M Heuvelink

Variogram model
Stage A El

sequential Gaussian simulation

“Output -

Probability
:maps :

map

Stage C

Figure 2 Monte Carlo simulation for uncertainty analysis, using sequential Gaussian simula-
tion (SGS) in three stages

with spatial variation at distances much shorter than the sample spacing. The sill is the
maximum value of the semi-variance, and equals the variance ¢*(x). The variogram
reaches the sill at a finite distance (the range), beyond which there is no longer spatial
autocorrelation.

Stage B: Error map realizations

Within Stage B, SGS is applied to generate equally probable realizations of the error field
Z(x). For this, the SGS algorithm randomly visits each location of the area. If it is 2 GCP
location, the value for the observed error is maintained. If not, the values of existing
neighbor cells (GCP values and already simulated values) are used in a kriging inter-
polation to this location. As defined here, SGS may be referred to as conditional Gaussian
simulation, since the whole procedure is ‘conditioned’ to the GCPs (this, as opposed to
un-conditional Gaussian simulation). Kriging provides a variance and mean for Z(x)
(Mowrer 1997, Burrough and McDonell 1998). Then, based on that mean and variance,
we assume a normal probability distribution, and a value is simulated by random selec-
tion from the normal distribution. When every location has been visited, the realization
is stored and the procedure may be repeated by following a new random path through
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all the cells, generating a new realization. This is done N times. Finally, each error map
realization is added to the original DEM, generating a set of N equally probable DEM:s.

Stage C: Creation of probability maps

Within the final Stage C, the set of N DEMs is used as input for an operation, e.g. a
simulation model. If the model uses a slope map as input, then first the set of DEMs is
used for the calculation of N slope maps. With the set of slope maps, the model is
executed N times, producing N output maps. From this, the probability distribution of
the output can be derived.

3 Ski Run Planning with Optimization

We now briefly describe a generic optimization model for land use allocation using only
a slope map as input.

3.1 Basic Model

The optimization model used in this paper optimally allocates new land use to an area
at the lowest cost. The method divides the area in a grid, measuring N rows by M
columns. Let there be K potential land uses £ (k = 1 ... K). A binary variable x;; is
introduced which equals 1 when land use k is assigned to cell (3, /) and equals 0 other-
wise. The proportion for each new land use type is represented by parameter Py. Thus,
the sum of all cells for which x;; = 1 covers P % 100 percent of the total area. Further-
more, development costs (Cj) are involved with each land use type k dependent on
specific physical attributes of the area. In this paper, the only physical attribute is the
slope map of the area derived from the DEM.

Because we want to minimize the development costs of the new land use, the prob-
lem may be written as an optimization model where an objective function (Equation 4
below) is minimized subject to a set of constraints. The details of the model are not
further discussed in this paper (see Aerts 2002 or Aerts and Heuvelink 2002 for addi-
tional details).

K N M
Minimize: Y, ¥, >, CiaXie (4)
k=1 i=1 j=t

This optimization mode} is solved using the simulated annealing algorithm, and
generates one optimal allocation alternative per optimization run. Simulated annealing
is a fast and robust optimization technique, capable of solving large combinatorial
problems such as land allocation. Details on this technique can be found by Aarts and
Korst (1989), Brookes (1997), Boston and Bettinger (1999), Aerts (2002) and Aerts and
Heuvelink {2002).

3.2 Application of the Basic Model: Ski Run Planning

The basic optimization mode} has been applied to an allocation problem, which involves
finding an optimal location for a ski run. The number of land uses K is 2, since each cell
is either part of the ski run or not. The width of the ski run is fixed to exactly 10
adjacent cells. The model starts with allocating an initial random run between fixed start

© Blackwell Publishing Ltd. 2003




218 JCJH Aerts, M F Goodchild and G B M Heuvelink
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Figure 3  Grid with an initial randomly allocated ski run before optimization (/ight gray) and
an optimal allocated ski run (dark gray) having identical start and finish points

and finish points located at opposite sides of the grid (Figure 3). This means that the
total surface of the ski run would amount to 100 x 10 = 1000 cells in the case of a grid
measuring 100 x 100 cells. Finally, going from the top to the bottom of the ski run, each
new row of 10 ski run cells may not divert more than one cell to the left or right from
that of the row above.

Development costs are the main input of the model and are assumed to be a func-
tion of the slope, as higher slopes involve more costs for artificial leveling and curving.
The cost function adds both basic costs for leveling of all slope gradients (removing of
rocks, smoothening) with costs for filling and curving for slopes steeper than 10 degrees.
The cost function is developed by experts (Cartesian 2000) and given in Equation 5:

C=a if 0<slope<10
C=a+b*slope if slope>10 (5)

where C (in $m™) refers to the total development costs. The parameter values ‘g’ and
‘b’ are set to 750 and 95, respectively. -

Given these conditions and cost specifications, the simulated annealing algorithm
starts by creating an initial random allocation of a run between the start and finish
points, and calculates the accompanying cost. Next, the model starts searching for an
»_Snumnﬁ run with lower costs. This procedure is repeated many times while minimizing
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development costs, until presumably the optimal ski run is obtained. Presumably refers
to the fact that heuristic optimization techniques as simulated annealing do not guaran-
tee an optimal solution (Aerts and Heuvelink 2002). However, the model was tested on
its consistency by running the model many times using the same input. Each time, the
model generated exactly the same result.

4 Implementation: Case Study ‘Silvretta Nova’
4.1 Introduction to the Case Study

The Silvretta Nova ski resort in Vorarlberg, Austria (Plate 7) has been selected as a case
study involving an authentic ski resort management problem. The study focuses on
selecting a site for a new ski run at the lowest development costs. The whole planning
process is a complex problem involving many stakeholders who should be consulted and
informed. Because of this, the Silvretta Nova ski region decided to develop an SDSS
named ‘Cartesian’ (Plate 7) in order to convey the new plans and create awareness of
the impacts of the plans among the stakeholders in the region (Cartesian 2000). The
instrument is meant to facilitate and structure the discussion on the pros and cons of ski
run development in order to capture the reactions of those who will be affected by the
new plans. It finally supports the planning process by selecting the most preferred site
for ski run development.

The SDSS is composed of five decision steps, according to the framework for ana-
lysis (Figure 1) (Aerts 2002). Step 1 presents the problem with background information,
followed by defining decision criteria (Step 2), external influences (Step 3) and finally
the design of ski runs and their presentation, respectively are conducted in Steps 4 and 5.

Step 4 of the Cartesian SDDS is referred to as the ‘computational step’, where
alternative ski run locations are generated. The simulated annealing model described in
Section 3 fits into this step. We propose to implement the Monte Carlo procedure within
the same computational Step 4, in order to provide the user with uncertainty informa-
tion about each generated ski run. We will not elaborate on visualization of uncertainty
(Step 5), but it is acknowledged as an integral part of using uncertainty analysis within
an SDSS (see, for example, MacEachren 1994, Kraak 1999, Aerts 2002).

4.2 Monte Carlo Implementation

The area assigned for ski run development has been marked in the white rectangle in
Figure 4. The slope map of the planning area measures 100 x 100 cells and is processed
from a DEM using the SURFACE module in IDRISI (Eastman 1997). Costs are directly
derived from the slope map, using Equation 5, and are shown with the original DEM
and slope map in Figure 4. All maps have a resolution of 25 x 25 m* The start and
finish locations are indicated in the same figure, and from here this proposed track is
referred to as ski run Alternative 1. :

Stage A

First, the error has been calculated at 70 available GCP locations in the area, by sub-
tracting the DEM value from the independently measured GCP value. Next, these error
values are used as input for modeling the variogram using the statistical software pack-
age GSTAT (Pebesma 1999). We fitted the variogram using a weighted least squares
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Elevation

1 1000-2000

1 750-1000

Figure 4 DEM, slope and development costs maps of the Silvretta Nova case study area with
the proposed start and finish locations

minimization. The basic variogram model has a spherical shape and is shown in Figure
5.1t has a range value of 2000 and a sill value of 65. Because of the smoothness of the
true elevation and the DEM, we assume the nugget to be 0 as the nugget variation is
very small compared to spatially dependent variation.

Stage B

For Stage B, GSTAT is used to generate a sequence of error map realizations using SGS
in combination with the variogram model determined in Stage A. The whole procedure
results in N equally probable DEMs, where N was initially set to 500, which is a
commonly employed number in similar studies (e.g. Mowrer 1997).

Stage C

Finally within Stage C, each DEM realization is processed with the SURFACE module
of Idrisi (Eastman 1997) to derive a slope map, thus yielding 500 equally probable slope
maps. Next, each individual slope map becomes the input for the simulated annealing
model for ski run optimization. One optimization result consists of 2 0-1 realization,
where a cell allocated as a ski run is assigned 1°, and ‘0’ otherwise.
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Figure 5 The basic variogram model of the error field fitted in GSTAT, using a spherical
shape with a range of 2000 and a sill of 65

5 Results
5.1 Probability Results

Probability figures indicate the chance that a cell is assigned as a ski run. The probability
is calculated by adding all N 0~1 realizations and dividing the result by N. But before
calculating the final probability map, we first have to estimate the required value
for N that provides a reliable estimate of the probability (remember that so far N has
been set to 500). A reliable estimate is defined as the number of realizations at which
the variance of the probability shows a stable value, also known as the ‘point of con-
vergence’ (Mowrer 1997). For this, all 0-1 realizations are added at an increment of
twenty. From this, the probability is calculated by dividing this sum by twenty for the
first twenty realizations, by forty for the first forty realizations, and so on. Next, the
standard deviation of the probability at each increment is calculated and plotted against
the number of realizations. Figure 6 shows the results for this calculation (see ‘Basic
run’), where the x-axis depicts the number of realizations and the y-axis the standard
deviation of the probability, From Figure 6, it appears that the standard deviation value
stabilizes between 400 and 500 realizations. The initial estimate of N = 500 seems
therefore reasonable.

Figure 7 shows the probability map as a result of the Monte Carlo analysis (from
here called ‘Basic run 1°). Low probabilities are expressed with dark colors and are
predominantly found to the left and right (near Locations a and c). The middle section,
near point ‘b, is apparently an uncertain area compared to the start and finish points.
Here, the model does not indicate an obvious route for the ski run. However, a closer
examination of the middle section shows a slight preference for a left oriented route as
depicted by lighter colors. In this area, probabilities seem to decrease going from the left
to the right.

Not surprisingly, areas with the highest probability are found near the start and
finish locations. These locations are fixed in the model constraints, and leave little space
for the model to find many alternative routes close to those points.
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SD of Probability against Realizations
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Figure 6 Average standard deviation (SD) calculated across successive increases in the
number of realizations at increments of 20 realizations
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Figure 7 Probability map based on 500 Monte Carlo realizations using the basic variogram. The
ski run calculated only on the basis of the original slope map, is depicted with black lines

5.2 Data Uncertainty and Development Costs

In Figure 8, the optimal track for a ski run based only on the original slope map is
shown with black lines — thus the optimal track without accounting for uncertainty as
within the Monte Carlo analysis. It appears that this track follows a different path,
somewhat more to the right, especially in the middle section of the area. An interesting
aspect for the user of the SDSS is to quantify the impact of these differences on the
variation in development costs.

Figure 8 shows two optimal allocated ski runs for different start locations. The first
(Alternative 1) is the one as discussed above. The second (Alternative 2) starts to the left
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B Aternative 1
Alternative 2

Finish 1 & 2

Figure 8 Alternative sites 1 (dark gray) and 2 (light gray) for a ski run. The development
costs for each of these runs has been calculated across all 500 realizations and on the basis
of the original slope map

of Alternative 1. Both are required to have the same finish location. The accompanying
costs for both Runs on the basis of the original slope map, are calculated to $1,620,000
(Alternative 1) and $1,501,000 (Alternative 2).

Next, we calculate the expected development costs for the same two Alternatives.
Therefore, the cost distribution of the two alternatives across all 500 realizations is

- calculated ~ thus calculating the costs for the two ski run tracks for each realization i.

The expected costs are calculated using Equation 6:
500

1 .

E 500 .MEUSS b, slope;)] (6)
where E is the average expected costs across all 500 realizations and the cost function
fla, b, slope;) refers to Equation 5. The results are shown in Figure 9 and Table 1.

It appears that the average expected costs for Alternative 1 are $2,135,000 and for
Alternative 2 $1,942,000. From both these numbers and Table 1, it can be concluded
that the average costs calculated in the Monte Carlo analysis are higher than those
calculated on the basis of the original slope map. The average difference amounts to
$441,000 and $515,000, which indicates that most probably, the true development
costs will be much higher than those based on the original slope map. This can be
explained by the fact that the DEM is no longer unrealistically smooth, but is trans-
formed through the Monte Carlo Analysis, in a more realistic DEM with higher vari-
ability. Consequently, this has resulted in a slope map with higher values, yielding higher
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Cost Distribution Aiternative 1 Cost Distribution Alternative 2
(across 500 MC runs) (across 500 MC runs)

Percentage [%]
&
Percentage {%]
&

1.7 195 205 215 225 235 245
cost 1.7 18 1.9 2 21 22 245
ost [x 100,000 $] - Cost [x 100,000 $]

Figure 9 Histogram of the development costs across ali 500 realizations

Table 1 Development cost [$]

Original slope map Average MC Difference
Alternative 1 1,620,000 2,135,000 515,000
Alternative 2 1,501,000 1,942,000 441,000

costs using Equation 5. Hence, an investment in a more detailed and accurate DEM (and
thus a more accurate slope map), could enhance the accuracy for finding an optimal
route for a ski run and its related cost.

5.3 Joint Probability

In previous sections, it was concluded that the left oriented route for Alternative 1 seems
to be the most probable route. The probability map supports an indication for this
observation by depicting slightly lighter colors towards the left of point b (Figure 7).
However, the probability numbers are individual values per cell, and do not indicate
whether cells are jointly allocated as a ski run within one 0-1 realization.

The joint probability (JP) approach calculates the probability for two cells being
jointly allocated as ski run cells across all 0-1 realizations. For this, the uncertain
middle section was subdivided into three potential ski run routes: left, middle and right
(Figure 10). The JP can be estimated for a cell pair (U, V) placed in each of those three
routes with the expression:

N
, B
U=useV=y= (10)

Here, U and V are individual cells that lie in the uncertain region. N is the number
of realizations and R, refers to the number of realizations that meets the condition
(U=u & V=v). R, equals 1 if U=u and V =, and 0 otherwise. Since we are looking
for cells being allocated as a ski run within each 0-1 realization, we set # and v to 1.

The results of the JP calculation for the Basic run 1 show indeed the highest JP value
of 0.55 for the cell pair to the left. This implies a preference for a left oriented route.

© Blackwell Publishing Ltd. 2003

Spatial Decision Support and Uncertainty Assessment 225

Middle Cells

Figure 10 The joint probability has been calculated for three pairs of cells that occur in the
routes of three possible runs: left, middle and right

The cell pair at the right shows the lowest JP value of 0.29, and hence is the least
probable route for a ski run. The result for the cell pair in the middle lies in between
those of the left and right pairs, but shows a JP value closer to the result for the left cell
pair. The latter is again an indication that a left oriented route is preferred when
accounting for the uncertainty of the input data.

5.4 Robustness Analysis: Consequences for the Probability

With the variogram used for the Basic run 1 (Figure 5), we now successively increase
and decrease the values of the range and sill parameters. Each changed parameter value
yields a new variogram model, which in turn is used for a new Monte Carlo analysis.
The range has been assigned to a value of 2500 (Run 2) and 1500 (Run 3) keeping the
sill at a value of 65. Thereafter, the range value has been kept constant at 2000 while
varying the value of the sill at 50 (Run 4) and 100 (Run 5).

Figure 11 shows the standard deviation values of the probability for the different
Monte Carlo Runs 2 to 5 as opposed to the Basic run 1. Runs 2 to § show a constant
value for the standard deviation of the probability between 400 and 500 realizations.
Furthermore, it can be derived that compared to the basic run (sill = 65, range = 2000),
both a higher range and a lower sill result in a lower variation in the probability. The
opposite is shown as well, as a lower value for the range and a higher value for the sill
result in higher values for the standard deviation.

Table 2 shows the variation in parameter values and, consequently, the percentage
change after 500 realizations of the standard deviation (SD) as compared to the Basic
run. An interesting aspect is that although differences are small, an increase in the range
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Figure 11 Average standard deviation (SD) calculated across successive increases in the
number of realizations at increments of 20 realizations
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value of 25% (2000 to 2500) lowers the SD by 0.9%, whereas a decrease in the range
by 25% (2000 to 1500) increases the SD by 1.9%. This is more or less twice as much.
Variations in sill values show that a decrease of 23% in the sill value (65 to 50) lowers
the SD by 0.9%, whereas an increase in the sill value by 100% (50 to 100) results in an
increase of the SD by 1.7%.
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Table 2 Parameters used for variogram modeling in ski run case

Run Variable Model Nugget Range Sill  SD % change
run 1: Basic  Probability = Spherical 0 2000 65 0.207 =

run 2 Probability  Spherical 0 2500 65 0.205 -0.8

run 3 Probability ~ Spherical 0 1500 65 0.211 1.9

run 4 Probability  Spherical 0 2000 50 0.205 -0.9

run 5 Probability ~ Spherical 0 2000 100 0.210 1.7

5.5 Spatial Consequences of Parameter Variations

We now examine the spatial consequences of the variation in variogram parameters.
Figure 12 depicts the probability per cell (across all 500 0-1 realizations) for being
included as a location for a ski run, for Runs 1 to 5. In general, it can be seen that the
probability field narrows with increased spatial autocorrelation (higher range values),
thus going from the left (Run 3), via the Basic run 1, to the right (Run 2).

In order to make a closer examination of spatial differences, we use Locations a, b
and c in Figure 12. Cells close to the fixed start and finish points {e.g. down to Location ¢)
show obviously the highest probability as the simulated annealing model does not have
much latitude to allocate ski run cells at a distance from these fixed points. Again, for
all Runs, the left-oriented route (thus left from Location a) seems to be more preferable
for being allocated as a ski run according to the somewhat lighter colors.

The difference in the probability field width due to variation in the range is clearly
shown at Location b. When comparing Runs 2 and 3, it can be derived that Run 3
nearly ‘touches’ Location b as opposed to Run 2. A similar observation can be made by
comparing the variation in probabilities due to different sill values. When comparing
Runs 4 and 5 at Location ¢, Run 5 clearly shows outliers of allocated ski runs to the
left of Location c indicating an increased variation in the model results and thus a
relatively high variation in the input data.

6 Discussion and Conclusions: Practical Use Within an SDSS$

Uncertainty analysis for SDSSs is still a relatively unexplored area. This is partly due to
the technical character of uncertainty analysis methods, which are therefore misunder-
stood or considered too difficult by decision-makers using an SDSS. Furthermore, uncer-
tainty can play many roles in the decision-making process, with different kinds of
impacts. That is often used as an excuse for not dealing with it. A better view would be
to examine all of its possible impacts, just as we need to examine all possible sources of
uncertainty in input data. To date, there have been few examples of the application of
uncertainty methods to problems that exhibit a decision-making character, while a few
studies point out the importance of doing exactly that (e.g. Huater and Goodchild 1995,
Cleaves 1995, Malczewski 1999, Agumya 1999).

Agumya (1999) describes the significance of uncertainty analysis for higher-level-
decision-making, We therefore used a case study in Austria to demonstrate the use of
uncertainty analysis within an SDSS, developed for stakeholders involved in the ski run
planning process, including representatives from the government, tourist business,
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forestry institutes and environmental agencies. i
decision-makers, using the SDSS in a ,Wonwm_..ow. WMWMMM“MMM sfered t0 s higherlevel

Agumya (1999) describes uncertainty as risks, and explicitly states that uncertainty.
such as data error, may have a greater impact for higher-level-decision-making noBu
pared to mosan-_m<n_.mm&&ob-5m_n5m (e.g. technical field experts). This can be illustrated
MOH "ro. Silvretta Nova case study where a workshop was organized focusing on either
including or excluding potential ski run sites based on broadly defined criteria such as
mnsw_.ov_.dmnn costs and environmental impacts. The uncertainty information described
in this paper is one of the aspects that may have influenced this process. Once it has
been decided which ski run alternative is preferred, technical experts will determine
where to exactly construct the new run, but within the boundaries given by the decision-
makers at the workshop.

We would like to point out that some studies warn that uncertainty should not be
defined as risks (Cleaves 1995). Many decision-makers that were present in the above-
described workshop are not likely to accept (data-) uncertainty as a risk because it could
undermine the publics’ support for the new plans. Moreover, not very uncommon in
this respect is the use of similar GIS data by different stakeholders in the decision
process, claiming different policies to be undertaken due to uncertainty in the prob-
lems underlying GIS information (Hunter 1999). This stresses the fact that uncertainty
information is not only more decisive at higher decision levels, it also may add political
sensitivity to the whole planning process when it is not carefully managed.

If we picture a user of an SDSS as described above, then most likely, this user does not
want to be confronted with detailed information about variogram parameters, and other
statistical details. However, the merit of the uncertainty method is simple and straight-
forward. In this respect, it is assumed that each user understands the mechanism by which
a perturbation in input data will have an effect on the outcome of a calculation using those
data. The described Monte Carlo approach is therefore considered as applicable to an SDSS
but we suggest detailed information to be excluded, while the different probability maps
that show the user the boundaries of the feasible planning area, are clearly presented.

The probability information and its derivative impact on other criteria, such as cost,
is the most valuable information for a user of an SDSS. This information can be espe-
cially effective for the elimination of alternative sites. Elimination is one of the most
commonly employed approaches for decision-makers in the area of resource allocation
in order to reduce a huge set of possible sites into a surveyable number of sites.

As pointed out by other research, it can be argued that the total calculation time of
the whole uncertainty approach is still a drawback for a direct implementation within
an SDSS. The total calculation time for one Monte Carlo run amounts to 4-5 hours
on a Pentium II-450 MHz computer. However, the bulk of the calculation time is
accounted for by re-running the simulated annealing model. The whole Monte Carlo
analysis, including the GSTAT calculations and the calculation of probability maps, is
a matter of minutes. It is expected that within several years the whole methodology
might run in a shorter and reasonable amount of time in an SDSS.
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