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Abstract  All data contain errors, and large spatial data sets are especially prone
because they contain data from multiple sources, and use different as-
sumptions about structure and semantics. The general issue is one of
data quality assurance, defined in terms of lineage, completeness, logical
consistency, attribute accuracy, and positional accuracy. We review a
series of quality metrics suitable for empirical description of data qual-
ity, and consider some of the special issues of quality related to spatial
data, especially the need to incorporate visualizations of data quality
into graphics and maps. We conclude that data quality is an essential
component of software for spatial data handling, including geographic
information systems.
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1. The Quality Problem

Data sets capture facts and enable their management and retrieval.
Yet in almost all instances there exists some external reference to which
the data set’s version of the facts can be compared. A data set created
by digitizing the contents of a published book can be checked against the
original; a measurement of temperature recorded in a data set can be
checked against an independent measurement; and a real-estate agent’s
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record of the price of a house purchase can be compared against the local
tax assessor’s data set. Data quality is quantifiable from the results
of such checks, and data set contents that fail to match their own or
independent reference sources are said to contain errors, or to be of
poor quality. Measures of data quality can be devised, based on the
frequency of errors, or on their magnitudes. Where there is no reference
source of equal or superior quality, then the fact being recorded is based
on inadequate definitions and is inherently vague and error-prone. For
example, there is no way of checking the quality of the statement “it is
cold here” against measurements of temperature, or location, although
the statement may be a correct representation of what was said, and
captured into the data set. Since a perfect match between data and the
real world is generally impossible, we conclude that error as defined here
must be endemic in data sets.

Many different terms are associated with quality, or the lack of it,
and there is little consensus about their precise meanings. Imprecision,
inaccuracy, inexactness, vagueness, uncertainty, unreliability, and incom-
pleteness all imply lack of quality in some sense. Nevertheless, the terms
capture divergent forms of variation between data set and reference, or
different sources of difference.

Data quality is an important issue for massive data sets, because poor
quality implies that decisions based on data set content will also be
poor, and because massive data sets may have been assembled quickly,
from multiple sources, at multiple scales, from sources with inherent
vagueness, or with little concern for quality. Massive data sets once
gloriously isolated by their size or complexity now find themselves open
to searching and use by millions over the World Wide Web, regardless
of their quality. High quality can be expensive, particularly if it involves
human intervention in verification and if many or all data set records
have to be checked.

Poor-quality can itself result in high costs, which may exceed the costs
of correction. Data sets may be used for regulation, where poor-data
quality may be the cause of costly litigation, particularly if it can be
shown that the developers and users of data sets failed to take adequate
actions to maximize quality or to deal with the known consequences of
poor quality. Cartographic examples of missing map features or mislo-
cated buildings abound, as in the case of the 1998 ski-lift accident in
Ttaly, or the 1999 accidental bombing of the Chinese Embassy in Bel-
grade. Poor quality data sets used for scientific research cast doubt on
the quality of the resulting scientific conclusions. Users of poor quality
data sets quickly become frustrated once products are found to be unre-
liable. Errors and uncertainties propagate from the data set to products
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and decisions derived from it, including answers to queries, results of
analysis, and transformations. Users of data sets need to know some-
thing of the inherent quality of a data set’s contents in order to assess
the fitness of the data set for specific purposes, and to determine the
quality of products derived from the data set. Such information can be
communicated in the form of text, but visualization also provides an
important tool for informing users about quality.

This chapter is structured as follows. The next section deals with the
description and representation of quality in data sets, and the techniques
that have been devised for communicating knowledge of quality through
visualization. This is followed by a section on the implications of quality,
with discussion of the state of knowledge in propagation. The chapter
uses the example of spatial data sets frequently, in part because research
on them has advanced to a significant degree, and many results have been
incorporated into standards and practice; and in part because quality
has added dimensions and significance for spatial data.

2. Elements of Quality

One of the most comprehensive analyses of data set quality is found in
Federal Information Processing Standard 173, otherwise known as the
Spatial Data Transfer Standard (www.fgdc.gov; for a more extensive
discussion of the elements of spatial data quality see Guptill and Mor-
rison (1995). Devised in the mid 1980s, it identifies five components of
quality for spatial data, as follows:

m  Lineage, defined as information about the process of creation of the
data set, such as the instruments used to make measurements, the
identities of individuals and agencies responsible for creation, and
the standards used to define the data set’s contents. By know-
ing such details, it is possible in many cases to make inferences
about quality. For example, knowing the identity of the instru-
ment used to acquire measurements often allows the user to make
meaningful estimates of their accuracy. Lineage also serves another
useful purpose by providing feedback — for example, if serious er-
rors are found in data it might be possible to link them to specific
faults in the production process. It is the data set lineage that an-
swers science’s call for documentation permitting repeatability of
experimental results, and therefore the independent confirmation
of findings necessary for the scientific method.

m  Completeness, or the degree to which the data set captures all of
the expected data. Completeness is often linked to the currency of
the data, or the degree to which the data represent current condi-
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tions, or conditions that existed at some point in the past and for
which the data set is intended to form a complete representation.
Currency is a significant problem for digital data sets, especially
when the date for which the data are intended to be valid differs
from the date of construction of the data set, or if either of these
dates are not precisely defined, or if different versions of the data
set are not clearly identified. Completeness can also refer to spatial
extent, the number of available attributes actually included, and
to known missing data. Many data sets for the United States, for
example, actually exclude Alaska, Hawaii, and the United States
Territories, and variable numbers of attributes for each state.

Logical consistency. This refers to the internal consistency of the
data, and the data set’s adherence to its own defined rules. For
example, logical consistency is violated if an object has two unique
identifiers, or if the value of an attribute falls outside its defined
domain. In spatial data sets, there can be logical inconsistency
between the geometric content of a data set (a point lies inside
the boundary defining California) and the topological content (the
point has an attribute indicating it is in Nevada). If the rules
are well-defined, then it is in principle possible to detect errors of
logical consistency without human intervention, and it may also
be possible to correct them. Such corrections require their own
rules (does geometry over-ride topology, forcing the attribute to be
changed to California, or does topology over-ride geometry, forcing
the point to be moved to the geometric center of Nevada?), and
it is difficult to avoid rules that create their own conflicts (moving
the point may be problematic if it is connected to another object —
for example, if the point is part of a lake shoreline).

Attribute accuracy. This refers to the accuracy of the recorded
attributes associated with each object. In a spatial data set, each
object — a road, a mountain, a lake, a city, a house — will have
certain defined attributes. These might include a unique iden-
tification number, a name, or in the case of a city the current
population. Attributes can be differentiated in various ways by
type. They may be qualitative (e.g., name) or quantitative (e.g.,
population count), and more elaborate schemes exist (see, for ex-
ample, Chrisman (1997)). From the perspective of quality, it is
important to distinguish between cases where an attribute can be
only right or wrong, and cases where it is possible to define degrees
of correctness. In the former instance, quality is best measured by
the proportion of errors, but in the latter case many methods are




DATA QUALITY IN MASSIVE DATA SETS 647

available for measuring quality, and many of these are discussed in
the next section. For example, a misspelled name of a city is more
right (and possibly open to automatic correction) than a name
that is completely wrong (e.g., in the case of Pittsburgh, Pittsburg
is less erroneous than Pittston). Finally, correctness may be de-
fined with reference not to reality but to the measurement process.
The debate over the use of sampling in the Year 2000 U.S. Census,
for example, has led to legislative prohibition of the methods that
could have provided the most accurate results given the available
budget. Yet the census itself assumes that the population’s street
addresses on April 15th, 2000 are their actual “places” as far as
the federal government is concerned.

m  Positional accuracy. The position recorded for an object on the
Earth’s surface can never be perfectly accurate, since the instru-
ments available for measuring position (surveying instruments, or
the Global Positioning System) have limited accuracy, and the
positions of the reference objects (the Poles, Equator, and Green-
wich Meridian) are also not perfectly defined. Even well-known
positional reference systems, such as the latitude and longitude
of geographic coordinates, require, at the minimum, knowledge of
the Earth model, its size and shape, and the vertical datum in
use. Standard coordinate systems such as the Universal Trans-
verse Mercator have inherent positional accuracies of about 1 part
in 2000, with systematic error depending on position. In some
cases it may be impossible to separate positional accuracy from
attribute accuracy. For example, it may be impossible to deter-
mine in the case of a measurement of the elevation of a point
above sea level whether the correct elevation has been recorded at
the wrong point, or whether the wrong elevation has been recorded
at the correct point. Nevertheless, spatial data with only limited
positional accuracy or precision, such as digital versions of coarse-
scale maps, can still have immense scientific value and may need
to be used in combination with data of different levels of quality.

This five-component scheme is recognized by being written into a ma-
jor U.S. standard, but many other terms have been proposed, often with
conflicting definitions, to capture the elements of data quality. Many
forms of data are inherently vague, because it is impossible to decide
with certainty what the correct value should be. For example, it is
impossible to determine when something should be described as cold.
Such evaluations are often termed subjective, because there is no reason
to expect any two people to agree on the correct value — they are not
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replicable. Many scientists would argue that such data have no value, but
others would argue that vagueness of communication is an indispensable
part of human existence.

Empirical scientists often distinguish between accuracy, or the degree
of agreement between a recorded observation and its true value, and
precision, or the degree of detail with which the measurement is recorded.
A widely recognized principle holds that precision should never exceed
accuracy. For example, if a thermometer is capable of measuring to the
nearest Celsius degree, then recorded measurements should never include
decimal places (e.g., 21 is acceptable but 20.986 is not). But precision is
also used to refer to the variation among repeated measurements of the
same phenomenon with the same instrument.

3. Description of Quality
3.1. Numeric values

Consider a measuring instrument such as a thermometer, and suppose
that it is being used to measure a temperature whose correct value is 21.0
Celsius. The thermometer is inherently inaccurate, and returns a value
of 23. By repeatedly comparing true and measured values it is observed
that the thermometer’s measurements are in error by amounts ranging
from —2 to 42 Celsius. So a straightforward way to record quality would
be by specifying the range. In a data set, this could be recorded in the
form of additional attributes — for example, as (23, +2, —2). The query
“Is the temperature greater than 267” would return “no”, but the query
“Is the temperature less than 227" would return “maybe”.

Range provides an easy means of responding to simple queries, but
it is problematic because it provides no information on the relative fre-
quency of large and small errors. In reality, it is almost always true that
the thermometer will produce small errors more frequently than large
ones. Moreover, if large errors are rare, it will be difficult to provide
an accurate estimate of range without making a very large number of
tests. Fortunately, it is known that under a wide range of circumstances
the relative frequencies of large and small errors are consistent with a
simple model, known as the Gaussian or normal distribution, the error
function, or the bell-curve, and shown in Figure 18.1. As a probability
density function, the probability of an observation lying between any two
values of the x-axis is defined by the area under the curve between those
limits. The width of the curve is best defined by the distance between
the center and the points of inflection, and is known as the standard
deviation. The instrument is said to be biased if the mean error is not
zero. Finally, the standard error or root mean squared error (RMSE) is
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defined as the square root of the mean squared difference from the true
value:

1/2
1 2
RMSE = {n Z(x X) } :
where X is the true value, n is the number of observations, and z;
denotes an observation, when the number of such observations is very
large.

The points of inflection shown in Figure 18.1 represent one standard
deviation on either side of the mean. Approximately 68% of errors will
be smaller than one standard deviation, and 32% will be larger. More
useful perhaps is the fact that 95% of errors will lie within 1.96 stan-
dard deviations of the mean, or approximately 2 standard deviations.
This is the basis for the confidence limits commonly heard in association
with opinion polls — for example, that the true value “will lie within 2
percentage points 19 times out of 20”.

Figure 18.1. The Gaussian distribution with a mean of 0 and a standard deviation of
1, showing the probability of a value lying between 2 standard deviations on either side
of the mean. Note the points of inflection (change of curvature from upward-facing
to downward-facing) at 1 standard deviation on either side of the mean.
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While the Gaussian distribution is often a very accurate model of
errors, it is not as easy to apply to the resolution of queries. But with a
little effort, it is possible to replace the “mayhbe” response of the earlier
example with a precise estimate of the probability that the temperature
is less than 22, given knowledge of the recorded observation, and of the
mean and standard deviation of the error distribution.

3.2. Qualitative values

The previous section discussed attributes that have numeric qualities.
Suppose now that a data set contains a qualitative attribute, such as the
names of streets. In most such cases a simple approach is to estimate the
proportion of such attributes that are correct, and the proportion that
are in error, and to attach these proportions to the results of queries.
A common instance of errors in qualitative data occurs in the accuracy
assessment of certain types of maps. For example, a map of land use
might be prepared by classifying a remotely sensed scene from a satellite.
A scene from the Enhanced Thematic Mapper Plus instrument on the
Landsat 7 satellite consists of an array of picture elements (pizels) that
are approximately square and 15m on a side on the Earth’s surface. To
test the accuracy of the automated classification, a random sample of
locations is selected on the ground, and visited to determine the actual
land use. Table 18.1 shows a hypothetical result of checking 100 such
points.

Table 18.1. Results of accuracy assessment of a map of land use (rows indicate
recorded values, columns indicate ground truth.

Residential Open space Agriculture Woodland Water Totals

Residential 33 3 0 1 0 37
Open space 2 24 4 0 0 30
Agriculture 0 1 17 2 0 20
Woodland 0 0 2 5 0 7
Water 0 0 0 0 6 6
Totals 35 28 23 8 6 100

From Table 18.1, it is apparent that the recorded value (row) agreed
with ground truth (column) in a total of 85 cases out of 100, since 85
cases lie on the main diagonal of the table. Thus a convenient way of
summarizing accuracy is to say that the probability of a randomly chosen
point having the correct recorded value is 0.85. But the table clearly
contains much more useful information. Water is never confused with
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any other class, since it is easy to identify correctly in satellite images.
Of the 35 points that are truly residential, 33 are correctly classified, but
2 are confused with open space. Agriculture is also sometimes confused
with open space, and sometimes with woodland.

Suppose that a user queries the data set to determine the class of
land use at a point. In general, we can say that the probability of a
correct response is 0.85. But if the land use recorded in the data set is
residential, we know from the table that a better estimate of correctness
is 33/37, or 0.89, with probabilities of 0.08 that the truth is open space,
and 0.03 that the truth is woodland.

3.3. Fuzziness

The previous section was based on an implicit assumption — that the
class at a point must be one of the five recognized options. In reality,
the area covered by a single pixel may be a mixture, for example at the
edge of a lake, so that the truth is not 100% water or 100% woodland
but some mixture of the two. Recently, there has been much research on
so-called mixture methods, which attempt to identify the percentages of
various pure classes present in a mixed pixel (see, for example, Gillespie
(1992)).

At a more fundamental level, however, it may be impossible to define
such categories as residential precisely, because the term itself implies a
mixture of different surfaces: roof, concrete, asphalt, grass, water (pool).
Rather, the set of pixels labeled residential is fuzzy, with poorly defined
properties. Fuzzy set theory has become popular in recent years as a
way of dealing with situations in which assignment to classes is overly
restrictive (see, for example, Zhu et al. (1996)).

In fuzzy set theory, membership in a class is measured on a continuous
scale that is often constrained to the range [0,1]. A pixel that is most like
the pure concept of residential is assigned the highest membership value,
while one that has nothing in common with residential is assigned 0. The
memberships for a pixel can be conceived as a vector {my, ma,...,my,},
where n is the number of classes, and m; denotes the membership of the
pixel in the ¢-th class.

Fuzzy set theory is attractive in dealing with uncertainty in categorical
data because it admits degrees of belonging, and thus approximates the
way humans think about classes of land use, or any categories defined
by complex or subjective measurements such as soil type, flood risk, or
land suitability. An observer might well be able to distinguish between
areas that are more residential and areas that are less so, or to agree
that the degree of “residentialness” declines as one moves away from
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a city’s center. Reasoning is also possible based on fuzzy sets, using
certain axiomatic propositions to manipulate degrees of fuzziness. On
the other hand, it seems dubious to claim that a degree of membership
assigned by one observer has any meaning to another observer, when
neither the class itself nor the scale of measurement of membership are
well-defined.

3.4. Metadata

Metadata are defined as data about data; they include descriptions
of the general properties of a data set, including its structure, format,
language, and definitions; and also information about quality, owner-
ship, and other properties that are useful to potential users. Metadata
are analogous to the information in a library’s card catalog, or to the
information printed at the front of a book, or on the outside of a package.

If a data set is passed without explanation or documentation from
one person to another, it can amount to little more than a confusing
mass of binary digits. Metadata are “what make data useful” in the
words of Francis Bretherton. They allow a user to assess the fitness of
data for a particular application, particularly with respect to quality.
Lack of metadata can also contribute to lack of quality, if a user makes
the wrong assumptions about the data’s meaning. For example, a user
might see a set of numbers labeled “temperature,” and not knowing the
scale of measurement might wrongly assume that the scale was Celsius
rather than the intended Fahrenheit. In effect, this would introduce an
error in every value other than —40.

Quality description is an important component of metadata, espe-
cially for spatial data. The Content Standards for Digital Geospatial
Metadata, created by the U.S. Federal Geographic Data Committee
(www.fgdc.gov), include extensive and precise descriptions of quality,
using the five components discussed earlier. The approach has been de-
scribed as truth in labeling, since it attempts to elicit from the creator
of the data as much useful information as possible about quality, but
sets no absolute standards or thresholds of quality that must be met.
Thus a data set with a quality statement that reads “This data set has
no quality statement” is fully compliant with the standard, but also has
information of value to the user in making decisions about the quality
of the data.

Unfortunately, the metadata approach falls far short of a complete
solution to the problem of describing quality, for several reasons. First,
it favors descriptions that apply uniformly to the entire data set, such
as a single measure of positional accuracy. In reality, however, it is
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common for elements of a data set to have different levels of quality, and
quality may need to be defined at the level of the class of object, the
individual object, or even the individual attribute. For geospatial data,
it is common for quality to vary geographically, and many topographic
maps include a much smaller map inset indicating how the quality of
the main map varies.

Second, the metadata approach implies that quality can be described
adequately without substantial restructuring of the data, by adding ap-
propriate slots to the existing data model. Consider the case of a geo-
graphic region, such as the Atlantic Ocean, represented in a data set as
a polygon, a series of points delimiting the ocean’s boundary in clock-
wise or counter-clockwise order. In reality the Atlantic Ocean is not
well-defined, and we might wish to describe its quality by adding suit-
able descriptors to the data set. One way to do this is to create a fuzzy
region, by conceiving of a continuous variable p such that the value of p
at some point is the degree of membership of that point in the concept
Atlantic Ocean. To represent the spatial variation of p, however, we
would have to abandon the polygon representation, and adopt a raster
or some other way of describing what is now a continuous surface. In
other words, description of quality has forced a change of data model
(Burrough and Frank 1996).

Third, the metadata approach implies that it is possible to achieve
a complete description of quality that is intelligible and useful to the
user. In practice, description of quality through appropriate models can
be exceedingly complex. The Gaussian error model described earlier
is among the simplest of statistical models of error, yet even it is a
sophisticated statistical concept. In geospatial data, it is common for
the error affecting one object to be similar to the error affecting other
objects, especially if the two objects are close to each other and if they
have been measured by the same process. For example, suppose a map
is created from an aerial photograph. One of the sources of positional
error is misregistration of the photograph; and this form of error will
affect all objects mapped from the same aerial photograph to varying
degrees. Positional errors of objects are frequently correlated, and the
degree of correlation is found to vary inversely with distance.

Because of positive correlations, the relative accuracy of the positions
of nearby objects can be much higher than the absolute accuracy, and
much higher than is implied by general descriptive measures such as
the RMSE that are contained in metadata. Relative properties such as
ground slope can be estimated accurately from digital elevation data
even though absolute elevations in the data set are of poor quality,
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provided errors show strong positive correlations over short distances
(Hunter and Goodchild 1997).

Many models of correlated errors exist, but they are not widely known
outside the research community, and their use in metadata to describe
quality is therefore highly problematic, since most users are not equipped
to understand or deal with them. To address this issue, Goodchild et al.
(1999) have argued that the concept of metadata should be broadened
to include methods. Instead of the parameters of a complex error model,
a producer should provide code that simulates the error model, pro-
ducing a sample of versions of the data set that represent the range of
variation due to uncertainty. Suppose, for example, that one wished to
describe the uncertainty associated with a forecasted high temperature
of 25 Celsius. Someone familiar with the Gaussian error model would
understand the statement that uncertainty was characterized by a stan-
dard error of 2. But the same information is contained in the simulated
set {26,24,23,28,21,...} if these are generated using an appropriate
code. Goodchild et al. (1999) apply the same concept to the much more
complicated case of geospatial data sets, arguing that the concept is no
more difficult in the latter case. Although the models are far more com-
plex, they need only be understood by the creators of the data and the
simulation code, not by the users.

3.5. Visualization

Visualization provides an attractive medium for communication of in-
formation about quality. Visualization has already proven its effective-
ness as a way of searching massive data sets for pattern and structure.
The existence of uncertainty can be conveyed by removing, blurring, or
greying, or by changing the visual depth of objects, bringing certain
objects to the front and pushing uncertain objects to the back. Visual-
ization of large spatial data sets as a method of communicating infor-
mation about geospatial data quality has been the subject of intensive
research (Beard et al. 1991, Davis and Keller 1997) and was reviewed
more recently by Clarke and Teague (1998).

MacEachren (1992) investigated the use of existing map methods for
uncertainty depiction, and introduced the variable of visual focus, shown
by crispness, fill clarity, fog, and resolution variation used to adjust the
boundaries between map features. More certain objects were depicted
as “a sharp, narrow line” and less certain features as “a broad, fuzzy
line that fades” toward the periphery. McGranaghan (1993) examined
realism and time as potential variables for symbolization. Objects of
lower data quality appear more “cartoonish” if data quality is low and
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more realistic if data quality is high. Time-based methods necessarily
involve animation and several methods utilizing time as a cartographic
variable were considered, including blinking, fading, and moving. The
amount of time a blinking object is present or absent reflects quality
information. Fading can be employed by having an object on the map
oscillate to reflect quality; McGranaghan showed a stream segment os-
cillating between green and blue (high confidence) or green and red (low
confidence).

Animations showing multiple realizations of a data set, and associ-
ated with the range of uncertainty described above, have been employed
by Fisher (1993) and Ehlschlaeger et al. (1997). Fisher used animation
techniques based on his earlier research to depict positional uncertainty
in soil maps. Soil inclusion information, provided by the data producer,
is conveyed to the user through an animated soil map that uses ran-
domization to show these inclusions within the predominant soil types.
Cells are continuously and randomly selected based on given inclusion
rate, producing a stochastic realization of soil type distribution at any
point in time. Ehlschlaeger et al. (1997) utilized animation to display
multiple stochastic realizations of output from least ~ cost path analyses
based on coarse resolution terrain data. Using multiple possible eleva-
tion surfaces, a series of cost surfaces for a least-cost path algorithm were
produced showing the resulting shortest path. Each realization was used
as a frame to create a smooth animation.

The integration of uncertainty information and data into a single dis-
play without graphic overloading was explored by Wittenbrink et al.
(1996) through an approach called verity visualization. This method
includes uncertainty visualization using uncertainty glyphs, fat surfaces,
perturbations, and oscillations. Uncertainty glyphs, using various graphic
variables such as size and shape of an icon to depict data attributes, are
placed on the visualization or map itself to indicate uncertainty at dif-
ferent locations. Fat surfaces indicate uncertainty in information by
presenting a range of data values at each location on the surface. Fi-
nally, Clarke et al. (1999) have advocated using visual depth in virtual-
reality-based representations of data, so that the “nearness” of the data
to the viewer portrays uncertainty using some of the variables already
discussed, such as color and animation. So, for example, as the data
user zooms in on a feature, it wobbles more or less depending on its
uncertainty.

In spite of this promising research, in the case of geospatial data, it is
clear that modern cartographic practice has traditionally left little room
for uncertainty, and the practices of the past - leaving areas blank, in-
serting mythical beasts — have now largely disappeared. Research shows
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that users need to be cued to expect uncertainty, but that once appropri-
ate instructions have been given, have no difficulty associating grayness,
blurring, or even shaking with uncertainty (MacEachren 1992). As the
research in this area yields results of use in everyday practice, two types
of user interfaces between the data and the uncertainty seem possible.
In the first, the treatment of uncertainty is as another layer of the map,
subject to viewing, and use in analytical operations. In this method,
the use of multiple realizations, all of equal possibility given the error
bounds, is one way to show uncertainty and estimate its propagation
into results (Journel 1996). Alternatively, uncertainty can be integrated
into the visual display of the information, and activated by the data user
when it becomes of concern during the analysis of information. Either
way, the revised role for uncertainty in the use of data from massive data
sets is significantly enhanced. Visualization offers a promising suite of
methods for informing the data user about uncertainty.

4. Working with Poor Data

References have been made to queries based on uncertain data. More
generally, the term propagation refers to the impact of uncertain or
erroneous data on the results of query, analysis, and modeling. For
example, consider a square parcel of land 100m on a side, with a true area
of 1 hectare. Suppose that the corner points are inaccurately surveyed,
with a mean error of 0 and a standard error of 2m in both coordinates.
If the errors are uncorrelated, it is possible to compute the standard
error in the estimate of area (Chrisman and Yandell 1989); in this case,
the result is 200m?. If the errors have a perfect positive correlation (in
other words, are identical), then the error in area is 0, since the square
moves under error as a rigid body without rotation or warping. Thus
the manner in which error propagates into the result — the estimate of
area — depends on the nature of the error.

The classical theory of measurement provides a basis for analysis of
propagation in numeric data. Suppose that some scalar measurement,
such as a measurement of temperature using a thermometer, is distorted
by an error generated by the measuring instrument. The apparent value
of temperature z’ can be represented as the sum of a true value z and
a distortion éz. If some manipulation of z is required, the theory of
measurement error provides a simple basis for estimating how error in z
will propagate through the manipulation, and thus for estimating error
in the products of manipulation (Taylor 1982) (see Heuvelink (1998),
and Heuvelink et al. (1989), for discussions of this in the context of
geospatial data). Suppose that the manipulation is a simple squaring,
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y = 22, and write dy as the distortion that results. Then:

Y+ 0y = (x + dz)?

= z? + 226z + terms of order §z2.
Ignoring higher-order terms, we have:
oy = 2zdzx.

More generally, given a measure of uncertainty in z such as its stan-

dard error o, the uncertainty in some y = f(z), denoted by o, is given
by:

Oy = —0q.

dx

The analysis can be readily extended to the multivariate case and the
associated partial derivatives.

In most cases, however, the analysis that results in the product y will
be much too complex to represent as a single function f, and in cases
where a function exists it may be non-differentiable. Simulation provides
an alternative that is more general, more straightforward conceptually,
and also more suited to non-numeric data. A series of inputs is gener-
ated, representing the variation in the data due to uncertainty, error, or
poor quality. Each input is then analyzed, to create a series of outputs.
Uncertainty in the output can be represented through some measure,
such as RMSE, or by visualization.

5. Final Comments

Quality remains a major issue for users of massive data sets, especially
when the data were created by people or processes remote from the
user. Humans are often faced with having to take information at face
value, and have developed complex arrangements and conventions as
the basis for trust. For example, we trust information we read in certain
newspapers because we trust the newspaper’s staff and news-gathering
processes.

Many of these conventions fail in the case of digital data. Electronic
networks make it easy for data sets to be copied and transferred with-
out identification of the creator, and make it easy for data from differ-
ent sources to be merged, creating products with heterogeneous quality.
Metadata are expensive to create, and owners of data often lack the
motivation to create them in advance of use. Finally, few software prod-
ucts offer the ability to handle information on quality, or to propagate
it appropriately to new data or results of analysis. Nevertheless, much
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progress has been made in recent years, and new products now becoming
available are much more likely to provide metadata services, and to sup-
port handling, visualizing, and propagating information about quality.

Bibliography
M.K. Beard, B.P. Buttenfield, and S.B. Clapham. NCGIA Research

Initiative 7: Visualization of spatial data quality. Technical Report 91-
26, National Center for Geographic Information and Analysis, 1991.

P.A. Burrough and A.U. Frank. Geographic objects with indeterminate
boundaries. Taylor and Francis, 1996.

N.R. Chrisman. Ezploring geographic information systems. Wiley, 1997.

N.R. Chrisman and B. Yandell. Effects of point error on area calcula-
tions. Surveying and Mapping, 48:241-246, 1989.

K. Clarke, P.D. Teague, and H.G. Smith. Virtual depth-based represen-
tation of cartographic uncertainty. In W. Shi, M.F. Goodchild, and
P.F. Fisher, editors, Proceedings of the International Symposium on
Spatial Data Quality ’99, pages 253-259, 1999.

K.C. Clarke and P.D. Teague. Cartographic symbolization of uncer-
tainty. In Proceedings, ACSM Annual Conference, 1998. CD-ROM.

T.J. Davis and C.P. Keller. Modelling and visualizing multiple spatial
uncertainties. Computers and Geosciences, 23:397-408, 1997.

C.R. Ehlschlaeger, A.M. Shortridge, and M.F. Goodchild. Visualizing
spatial data uncertainty using animation. Computers and Geosciences,
23:387-395, 1997.

P.F. Fisher. Visualizing uncertainty in soil maps by animation. Carto-
graphica, 30:20-27, 1993.

A.R. Gillespie. Spectral mixture analysis of multispectral thermal in-
frared images. Remote Sensing of Environment, 42:137-145, 1992.

M.F. Goodchild, A.M. Shortridge, and P. Fohl. Encapsulating simulation
models with geospatial data sets. In K. Lowell and A. Jaton, editors,
Spatial accurary assessment: Land information uncertainty in natural
resources, pages 131-138. Ann Arbor Press, 1999.

S.C. Guptill and J.L. Morrison. Elements of spatial data quality. Elsevier,
1995.




DATA QUALITY IN MASSIVE DATA SETS 659

G.B.M. Heuvelink. Error propagation in environmental modelling with
GIS. Taylor and Francis, 1998.

G.B.M. Heuvelink, P.A. Burrough, and A. Stein. Propagation of errors
in spatial modelling with GIS. International Journal of Geographical
Information Systems, 3:303-322, 1989.

G.J. Hunter and M.F. Goodchild. Modeling the uncertainty of slope
and aspect estimates obtained from spatial databases. Geographical
Analysis, 29:35-47, 1997.

A.G. Journel. Modelling uncertainty and spatial dependence: Stochastic

imaging. International Journal of Geographical Information Systems,
10:517-522, 1996.

A.M. MacEachren. Visualizing uncertain information. Cartographic Per-
spectives, 13:10-19, 1992.

M. McGranaghan. A cartographic view of spatial data quality. Carto-
graphica, 30:8-19, 1993.

J.R. Taylor. An introduction to error analysis: The study of uncertain-
ties in physical measurements. University Science Books, 1982.

C.M. Wittenbrink, A.T. Pang, and S. Lodha. Glyphs for visualizing
uncertainty in vector fields. IEEE Transactions on Visualization and
Computer Graphics, 2:266-279, 1996.

A.X. Zhu, L.E. Band, B. Dutton, and T.J. Nimlos. Automated soil
inference under fuzzy logic. Ecological Modelling, 90:123-145, 1996.




