Michael F. Goodchild

The Aggregation Problem in Location-Allocation

Location-allocation solutions based on aggregate estimates of demand are
subject to error because of a loss of locational information during aggregation. It
is shown that any method to remove or reduce uncertainty must be solution-
specific and therefore impractical, for both median and center classes of
problems. The significance of the error is illustrated by simulation of solutions to
a number of artificial and real problems. It is suggested that aggregation
problems be specifically addressed in applications of location-allocation models,
and possible methods are proposed.

1. INTRODUCTION

Uncertainty can be present in location-allocation models in a number of
ways. Lack of information, measurement error, and uncertain forecasts of
future patterns can affect the data base on which the model rests, the
constraints, and even the objective function. All of these, in turn, result in
alternative solutions with varying degrees of likelihood. Most of the existing
work on uncertainty appears to have concentrated on the data base; although
Webber [28] has provided a review of some of the wider effects of uncertainty.
A number of papers (see for example [6, 14,30]) have studied the effects of
uncertainty in the knowledge of the precise location of each demand node,
deriving expected solution locations under various distribution assumptions.
Carbone [3] has applied stochastic programming techniques to the case of
uncertain demands, and Jucker and Carlson [13] have considered this class of
uncertainty in the plant location problem. Frank [7,8] developed some theo-
retical results for probabilistic weights on networks, and Wesolowsky [29]
provides a more or less complete solution to the one-dimensional facility
location problem under uncertainty. Seppala [23] has applied stochastic pro-
gramming to the case of uncertain costs.

Many of the fields to which location-allocation models have been applied
take the data base as some aggregation of a geographically dispersed demand.
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When the demand is based on a highly dispersed pattern of individuals, as it is
in problems of public facility location, it is necessary in the interests of
manageability to aggregate to some set of more or less arbitrary statistical areas.
The same is true of emergency facility problems, where a virtually continuous
probability surface of demand must be collapsed onto a number of zones. The
zones themselves may be chosen to coincide with standard statistical areas, such
as census tracts, to allow predictive models to be built, or may be chosen to
allow easy administrative implementation of the plan through the use of
administrative “building blocks.”

A growing literature has begun to show that many results of geographical
modeling are not invariant under changes in the system of geographical areas. It
is possible to identify fields, in fact, where results are almost entirely attribut-
able to zoning. It has been shown to be particularly important in spatial
interaction modeling (see, for example, [1, 21, 19]) where model errors drop
consistently with successive aggregation.

Openshaw [20] has argued that the effects of zoning are conventionally
treated rather like those of sampling; the observed zones are taken to be a
random sample of all possible sets of zones, and hence the results are taken to
be a sample of all possible sets of results. This is unacceptable, because zones
are always constructed for some specific purpose that is rarely irrelevant to the
study, and so usually have a strong biasing effect. It is therefore imperative that
the effects of zoning on such measures as ecological correlations be examined
explicitly, and he gives examples of possible approaches.

Torngvist et al. [25] have discussed the aggregation problem in a location-
allocation context. This paper attempts to evaluate the nature and degree of
zoning uncertainty in location-allocation solutions, and the ways in which it can
be minimized. The first section discusses aggregation effects on median prob-
lems in continuous space. This is followed by a comparison with minimax and
coverage solutions, and then by a discussion of discrete space results.

2. AGGREGATION EFFECTS IN CONTINUOUS SPACE: MEDIANS

Let there be a demand base consisting of n points located at (%, y,,i=1,n)
with weights w,.
Define a median as the point (x,, y,,) such that

S f (5= 5"+ (g y)*] "

is minimized. At this median, the first derivative conditions reduce to

2 w;cosf,=0 2 w;sing, =0,

where §, is the angle subtended at the median by the point i and some fixed
direction.
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Now let a subset S of nodes be aggregated. If the median is to be unaffected,
we must have

> w, cosh,= Wcosd; > w;sinf,= Wsin,

= i€s

where W=Z2, _cw;,, and ¢ is the angle subtended by the aggregate node. Since
both conditions must be independently satisfied, it is clear that a solution for ¢
will not generally exist. Furthermore, any solution for ¢ depends on the 4,
which in turn depend on the location of the median. We conclude that there
can be no general rule for the location of the aggregate point that depends only -
on the locations of points in S. As a corollary, replacement of S by an aggregate
point will generally affect median solutions. (Equally, if a “safe” aggregation
procedure did exist, it would form the basis of a very much simpler solution for
the median.)

In aggregating geographical data, the point most commonly chosen is the
centroid, X=2Zx,w;,/ W; Y=3y,w,/ W. Figure 1 shows an aggregation of two
points A and B, weight o W and (1 — o )w respectively. The centroid G divides
the line AB in the ratio AG:BG=(1—)/x. To preserve the median,
however, the two points would have to be replaced by one of weight W=
W[a®+(1— «)*]'% at an angle A given by tanA=tanf(2x —1). We can
represent the distortion in vector notation. Let the two nodes A and B generate
vectors at M proportional to their respective weights. Then X and W' are_
respectively the direction and magnitude of the resultant vector. The distortion
of the median depends on the difference between the vectors generated by A
and B, and that generated by a single aggregate point located at the centroid.
Writing X and Yj for the components of the resultant difference, it is easy to

Fic. 1. Aggregation of Two Points in Relation to a Median
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show that
X, = W(cos8 —cosy)
Yp=W[(2 —1)sinf—siny],
where

1+ (2« —1)tanftanf |

tany=tané

The magnitude of the resultant is given by (Xz®+ Y3?)"/% and its direction by
tan~" (Y /Xg).

The most important conclusion to be drawn from equations (1) is that the
resultant is never zero except in the trivial case o =0 or 1. When « =0.5, the
centroid G is in the correct direction from the median but for the resultant to
vanish G would have to have a reduced weight.

The largest resultants occur when 8 approaches —8 and x approaches 1. In
this region R can exceed W, up to a limit of 2'/*W when the centroid and the
resultant of A and B are 26 apart. This creates the paradoxical situation that the
distortion vector due to the aggregation of A and B is greater than the sum of
the vectors generated by A and B themselves.

Hillsman and Rhoda [12] calculated the error that results when distances are
measured from some external reference point to a centroid. Distance to the
centroid is a systematic underestimate of the mean distance to disaggregated
points, and Hillsman and Rhoda showed that the error can be as much as 8
percent. Distance error does not affect median locations directly, however; the
source of median error lies in the inappropriate representation of direction and
weight in aggregated data.

The next section illustrates the magnitude of the aggregation effect by
simulation of a number of median problems in continuous space.

3. SIMULATIONS OF MEDIAN PBOBLEMS IN CONTINUOUS SPACE

The disaggregated data base for these experiments is defined as an area 30
units by 30, containing 900 points of unit weight in a square array. Solutions
were found for 1, 2, and 4 medians to minimize

‘ 1/2 o ‘
2; 2, L[ (x= X, + (9~ Y)*]"" subject to 2’ L=w,

where X;, Y, are the median locations, and L is the allocation from i to j. This
is, of course, the simple unconstrained location-allocation problem in continu-
ous space. Solutions were found using the patterned search approach described
by Tornqvist et al. [25] as programmed by Kohler [15] after rejecting the
alternating heuristic methods [5] because of poor performance. Throughout the
study the reliability of heuristics was checked repeatedly by multiple runs to
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Fic. 2. 1-Median Solutions under Successive Hierarchical Aggregations

ensure that distortions were not likely to be the result of local minimum
problems.

The difficulty of defining a random aggregation in space, or a random
partitioning, has been recognized for some time. Two approaches were used
here: a random hierarchical procedure with contiguity constraints, and the
S-mosaic defined by Pielou [22]. In the first, which is analogous to the
well-known Ward clustering algorithm [26], a list was made of all possible ways
of joining neighbors, using the Rook’s case in which each point has four
neighbors. At each stage in the aggregation a join was randomly selected from
this list. As groups form, there may be several joins that would result in the
aggregation of the same two groups. The algprithm rejects any joins that might
result in the linking of two arms of a single group. Under these conditions, n
areas will be produced after precisely 900-n joins.

In the S-mosaic process, a set of points are randomly located in the study
area. Each base data unit is then assigned to the nearest random point, and
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becomes part of the latter’s aggregate area. The aggregate areas are conse-
quently the Thiessen, Dirichlet, or Voronoi regions around each random point.
Since a random. point need not be assigned any data points, the number of
aggregate areas may be less than the number of random points.

In both modes, aggregations were made to the centroid, since this is the
common geographical practice and since it has been shown above that no
effective alternative exists.

Figures 2—4 show the results of successive hierarchical aggregations on the 1-,
2-, and 4-median solutions. (In each figure the numbers denote the number of
areal units in the aggregated data base.) For 1 median, (15,15) is the solution
for both extremes at n=900 (no aggregation) and n=1 (complete). As aggrega-
tion proceeds, the optimum is observed to drift away from (15,15) and then
return. Differences are first observed at around n =400, and reach a maximum
at about n=100. Judging by the literature, n=100 would be considered a high
degree of disaggregation for a simple, uniform study area.

In the 2- and 4-median solutions the two extremes are not the same. At
n =900 each median is assigned a symmetrical share of the study area, but as n
tends to 1 one center becomes dominant at (15, 15) and the other(s) disperse to
peripheral locations. For the 2-median solution Figure 3 illustrates the very
rapid movement of the second, peripheral node as n is reduced below 100.
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Fic. 3. 2-Median Solutions under Successive Hierarchical Aggregations
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Fic. 4. 4-Median Solutions under Successive Hierarchical Aggregations

Similarly, Figure 4 shows littde movement up to n~150, followed by a migra-
tion of one node to the dominant location and rapid oscillation of the other
three.

In contrast to the successive hierarchical aggregations of Figures 2—-4, Figure
5 shows a number of independent replications of aggregation to n =150 for the
4-median solutions. Again it is possible to produce large distortions of the
solution by manipulating the pattern of geographic zones even at this relatively
low level of aggregation.

Of course, the parameters of the preceding simulations have been de-
liberately chosen to produce large distortions. Effects would be less dramatic
with a nonuniform demand density and a radially less symmetric study area, if
measured solely in terms of location. But, on the other hand, such problems are
much more readily solved by intuition, and much less sensitive to changes in
parameters, than the ones used in the simulation. So if distortions are measured
in terms of sensitivity, or the performance of intuition, they remain roughly
constant.

Distortions also depend on the process of aggregation and the range of areas
produced. The hierarchical process tends to produce a wider variation in area,
showing a good fit to the Pareto distribution, whereas the areas produced by
the S-mosaic process are more uniform and follow a gamma distribution. The
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Fic. 5. Independent Replications of Hierarchical Aggregations to 150 Areas, 4 Medians

distortions produced by the S-mosaic process are generally smaller, and
although the hierarchical distortion is high at n=150, the S-mosaic becomes
comparable only for n<50. There is, of course, no general size distribution for
geographical areas, but the literature contains support for both of the models
used here, so they cannot be rejected as unrealistic. The size distribution
produced by the S-mosaic process is approximately gamma, and has been used
as a model of political and administrative divisions. Census tracts, which are
frequently used as the basis for location-allocation studies, show a size distribu-
tion with a long high tail of large, suburban tracts and tend to follow the
lognormal or Pareto distributions, which are produced by the hierarchical
aggregation process used here (for a review of this literature see [2, 4] or [9].
Mandelbrot [17] has presented a model for the Pareto distributions observed
for certain geographic areas.)

4. NORMATIVE ZONING FOR MEDIAN PROBLEMS IN CONTINUOUS SPACE

Since zoning can produce considerable distortion of median solutions, this
section considers the possibility of zoning in order to produce certain pre-
scribed ends. In particular, a zoning scheme can be chosen to have minimal
effect on a solution, or to have the maximum possible effect.
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The hierarchical algorithm used in the previous section was modified so that
joins could be chosen to satisfy certain criteria, rather than generated randomly.
First, joins were made only between areas assigned to the same median, since
joins across allocation boundaries more clearly affect the solution. Within this
constraint, from within the area assigned to each median, the join was selected
that left the net distortion of the median closest to zero. This allows joins to
reduce or remove the distorting effects of previous aggregations.

The results on the 1-median solution are shown in Figure 6 for 550 areas. The
figure shows the pattern of aggregation at this stage. The shaded area has not
been aggregated, and so consists of single cells. The distortion of the median is
effectively zero. There are systematic tendencies due to the use of a square
array of base points, particularly in the long thin areas pointing to the median
from each of the four prime directions. The tendency is for joins to be made
first between cells near the periphery, and subtending a small angle at the
median, consistent with equations (1).

The enormous number of zoning patterns available means that it is possible
to satisfy a wide variety of objectives by similar methods, comparable to the
AZP’s (automated zoning procedures) defined by Openshaw [20]. But since the
distortion produced by aggregation is dependent on a particular solution, there
can be no method of zoning to minimize distortions for all solutions. We can
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Fic. 6. Normative Aggregations to n=>550, 1-Median Solution
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infer, however, that aggregations are relatively safe near the boundary of the
study area, in regions of low weight density, and between pairs that are aligned
in a direction away from the center of the study area.

5. MINIMAX PROBLEMS IN CONTINUOUS SPACE

~ Minimax problems are taken here to mean those in which m centers are
located so as to minimize the maximum distance between demand points and
their respective centers. Aggregation can only affect the solution to a minimax
problem if it would result in a change in maximum distance. This can occur in
two ways; in an aggregation involving the node or nodes that are at the
maximum distance in a particular solution, or in an aggregation between other
nodes that would place the new aggregate node at more than the maximum
distance from its assigned center. The latter case may arise with pairs of nodes
assigned to different centers. The minimax problem is similar to the median,
then, in that in both cases the effects of aggregation are unique to particular
solutions, and therefore in that no general rules for aggregation can be found.
Although some aggregations are more likely to cause distortions than others, in
the median case the safest aggregations are at the periphery of the study area,
whereas in the minimax case they are in the center. Coverage problems are
identical in this respect to minimax.

6. NETWORK AGGREGATION

We now consider the effects of aggregation on network or discrete-space
problems, taking the median case first. Let there be a subset of nodes selected
as medians. Then the paths along which nodes are allocated to respective
medians form a set of trees. Figure 7 shows the trees for a 6-median solution in
Southwestern Ontario. Nodes have been weighted by their 1976 populations,
and links are those of the provincial primary highway network. All solutions
described in this section were found using Maranzana [18] and Teitz and Bart
[24] heuristics as implemented by Hillsman [11].

By analogy to the resolution of vector notation used in the earlier sections,
any aggregation between nodes in the same tree cannot affect the solution,
provided the aggregate node is given the sum of the aggregated weights.
Aggregations of nodes in different trees of the same median may or may not
cause a distortion, depending on the weights. The greater the weight “moved”
from one tree to another by the aggregation, the greater the risk. The same is
true of aggregations across area boundaries. The dashed lines in Figure 7 show
the inter-area boundaries and also the lines separating the individual trees of
each median (the “interfluves”).

We can now classify every link in the network as either safe (green) or
potentially unsafe (red), according to whether movement of demand along the
link through aggregation could produce distortion. In this particular 6-median
solution there are 88 greens and 47 reds. The proportion of reds declines with
the number of medians, as one might expect, from 53 percent in the 6-median
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Fic. 7. 6-Median Solution for Southwestern Ontario

solution to 15 percent in the 1-median. There is some consistency in the pattern
of red links over changes in the number of medians because of the tendency for
heavily weighted points to become solution nodes. Links aligned in the direc-
tion of heavily weighted nodes tend to be in the same tree, and so are rarely
red, and the highest scores are associated with links aligned perpendicularly to
major nodes. Figure 8 shows links by the number of solutions (from 1 through 6
medians) in which each was colored red. Note that the concept of orientation
must be interpreted in relation to link lengths: a link i is “perpendicular” to a
node k if |d;;—dy|/dj is close to 0, and “aligned in the direction of” k if the
ratio is close to 1.

Of the 88 links that were green for 6 medians, 78 were green in all ‘six
solutions. These include links that form the only connection between an
isolated node and the network, which must always be green. Short links are
more likely to be green than long ones, as are links on the periphery of the
study area.

By comparison, safety in relation to minimax solutions is much harder to
identify. Aggregations between trees may cause distortion if they affect the
observed maximum distance, and so may aggregations within trees. In general,
only a small number of nodes will be at the observed maximum distance, and so
only a small number of links are unsafe. As before, this set of links. will be
unique to each solution and will tend to concentrate on the periphery. This
contrasts with the relative safety of the periphery in median solutions.
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Fic. 8. Number of Median Solutions in Which Links Were Colored Red, Southwestern Ontario

Both examples considered thus far have assumed a discrete pattern of
demand at the most disaggregated level. The third example is based on a
continuous or near-continuous demand surface. '

7. AGGREGATION FROM A CONTINUOUS SURFACE

In a recent study of fire station location in London, Ontario [27], estimates of
demand were based on the observed pattern of 2,458 alarms during the
calendar year 1973. The pattern can be generalized to a virtually continuous
alarm density over the city, with a peak in the core area.

In the initial study the surface was collapsed onto a set of nodes by assigning
each fire to its nearest node, in other words integrating the surface over the
Thiessen polygons of each node. The nodes chosen were 150 major intersections
of the street network in the city. The effects of this aggregation were unknown
at the time, and the following section attempts to evaluate them, in two forms:
first, the relationship between distortion and the number of nodes; and second,
the importance of the locations of the 150 nodes. Solutions are in each case for
9 medians.

In the first experiment the number of nodes was reduced by random
sampling in stages from 150 to 28, each stage being a subset of the previous
stage. Figure 9 shows the migration of the medians as the number of nodes was
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Fic. 9. Movement of Nine Medians Under Successive Elimination of Aggregation Nodes

Fic. 10. Movement of Nine Medians with Redistribution of 150 Aggregation Nodes
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reduced. In some cases movement is consistently in one direction; in others
medians return to earlier positions as the number of nodes decreases. Because
of the distances over which solutions move, the identification of medians in
successive steps is to some extent ambiguous, but it has been made in such a
way that no crossings of paths occur.

In the second experiment, aggregations were made to redistributed nodes.
Recall that the original nodes occupied junctions on the street network. In each
simulation the set of nodes was redistributed over the street network according
to the following process. First, 150 links were randomly chosen from the set of
265. Then a node was placed at a random location on each link in this subset.
This process ensures that the density pattern of nodes is roughly the same in the
redistribution. Finally each fire was allocated to the nearest node as before.

Ten simulations were performed, and Figure 10 depicts the variation among
the 9-median solutions. The shaded areas are drawn such that each contains one
median in each of the ten solutions. Each area is the convex hull of ten points,
except in cases where an overlap has been avoided by using a concave
boundary. As in the case of Figure 9, the allocation of medians to polygons is to
some extent arbitrary, but Figure 10 gives some impression of the distortion due
to this form of aggregation.

8. .CONCLUDING REMARKS

These experiments have shown that the effects of aggregation error on
median problems are substantial. The effect on center or coverage problems is
more direct and obvious; however, the strength of the effect has been expressed
in terms of movement in solution locations. Goodchild {10] and Larson and
Stevenson [16] have pointed out that the objective functions of median-like
problems are relatively insensitive to locations. Accordingly, aggregation tends
to produce much more dramatic effects on location than on the values of the
objective function. But the main social advantage of location-allocation tech-
niques, that they provide objective methods for recommending specific solu-
tions to planning problems, seems to be lost if the specific solutions are simply
the result of one particular pattern of aggregation, and not in any sense
absolute.

The results in this paper show that solutions using aggregated data are open
to extensive manipulation, and in fact cast some degree of doubt on the
usefulness of many location-allocation models. The steps a modeler should take
to minimize or evaluate the severity of the problem depend on the origin of the
aggregation. In some cases aggregation is performed by the modeler to reduce
the problem to manageable size; in other cases, the data were initially obtained
in aggregated form and there is no access to disaggregated information. Let us
take the former case, however. Denote the disaggregated data by L, the
aggregated by H.

Consider a median solution in continuous space based on H. From L and the
aggregation rules it is possible to compute distortion vectors for each median,
which give a measure of the degree of distortion. They do not, of course,
indicate the solution for L, but could be used as the basis for an iterative
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algorithm, in which new trial locations could be based on the magnitude and
direction of each distortion vector in the previous step. '

Distortion of median solutions on networks is not continuous; a certain
threshold weight must be redistributed along “red” links before the solution
will change, in a series of sudden jumps from node to node. The threshold
condition is that the weight in one tree emanating from a solution node (see
Fig. 7) exceeds the sum of the weights in all other trees from that node. Again,
this condition can be identified for an H solution knowing L and the aggrega-
tion rules, and used as the basis for a measure of distortion.

The above argument is based on the assumption that solution for L is not
possible. However, we find in many examples that L solution is simply much
more expensive. Improved accuracy from disaggregation can then be regarded
as having an intrinsic value that can be paid off against increased solution costs,
as one might do in comparing exact and heuristic solutions.
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