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Spatial Choice in Location-Allocation Problems: The
Role of Endogenous Attraction

Spatial choice, a voluntary form of allocation of consumers to central services,
is usually conceived as affected by two factors, distance and attraction.
Although usually regarded as exogenous, attraction is in tumn affected by the
level of use a service receives, and thus by spatial choice. This paper explores
the system defined by these relationships, largely by simulation. Proposals are
made concerning the initiation and perturbation of the system, and attempts are
made to generalize the results. Although it is difficult to connect form with
process in such a system, it is possible to identify the factors responsible for
system stability.

Most of the recent progress in facility location-allocation problems has been
in those areas where it is reasonable to assume a single goal for the entire
system. It is in problems such as political districting [15], or the location of
day-care centers [9] or of warehouses for a single corporation [6] that one can
most readily assume that the design objectives of the system can be represented
in the optimization of a single parameter, usually some form of aggregated cost.

In the simplest models both location and allocation are assumed to be under
the control of the designer of the system. In the warehouse location problem,
for example, the designer specifies both the locations and sizes of the
warehouses, and the specific pattern of demand allocation to them; and in the
political districting problem the analyst locates district boundaries, and thus
implicitly makes allocations of voters to districts.

In other cases, however, it is clear that the allocation should be regarded as a
matter of spatial choice on the part of the individuals responsible for demand in
the system, and not placed under the control of the designer. In cases of retail
store location, only the central facilities supplying service are controlled by the
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designer; the individual may choose which store to patronize in order to satisfy
his own, rather than the designer’s, goals. Such cases of voluntary allocation by
spatial choice occur more frequently in the private sector, whereas controlled
allocation is common in the provision of public sector services.

Consider the unconstrained location-allocation problem in continuous space
[4]. The objective is to minimize the aggregate distance separating fixed
demand points (individuals) and a given number of facilities. The designer must
determine the locations of the facilities, and the allocation of demand.

Clearly the optimum allocation will assign each demand to its nearest facility,
while each facility is optimally located with respect to its assigned demand. The
solution thus satisfies the aggregate goal, and also allocates each individual to
the closest facility. In this case the distinction between voluntary and controlled
allocation is irrelevant if individuals behave according to the rule that each
minimizes distance in making a choice.

Consider now the application of capacity constraints to the amount of
demand each facility can serve (the transportation-location problem of Cooper
[5] and see [7]). There will now be cases in which demand is assigned to some
facility that is not the closest available. The final solution, therefore, requires a
controlled allocation of individuals to centers, since in general it is impossible
simultaneously to constrain the amount of demand served by each facility, and
to allow each individual to behave according to an individual goal. In the
central place problem, which is clearly one of voluntary allocation, some
facilities must serve a greater share of the demand than others, simply because
of the physical distribution of demand.

Several location-allocation models have been developed in the context of
voluntary allocation. Holmes et al. [9] assumed that all individuals would
choose the nearest center, and that demand would decrease linearly with
distance traveled. Abernathy and Hershey [1] added an additional dimension
by allowing individuals to divide their demand between several facilities in
amounts that were in inverse proportion to the respective distances. But in both
cases allocations were made on the basis of distance alone, on the assumption
that no other criteria for individual spatial choice existed. This may be reason-
able in the case of identical facilities in the public sector, but it is more usual
for facilities to be differentiated along several additional dimensions. Behavior
will respond both to the physical attributes of facilities, such as size, price
variation, and so forth (factors that are usually subsumed under “attraction” in
both gravity and preference [13] models of spatlal behavior), and also to
behavior itself in a direct feedback mechanism, since underuse and crowding
are themselves important determinants of individual choice.

This paper explores some of the implications of voluntary allocation in the
location-allocation field. Behavior is allowed to depend on distance, on the
exogenous characteristics of each facility, and endogenously on the actual level
of use experienced. The conclusions concern the stability of such systems, the
problem of modeling allocations in the presence of feedback, and the question
of rational decision making.

Simulations were made using a data set consisting of 49 central places, or
facilities, in a small area of western India. The populations of the places were
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known, together with the lengths of the shortest routes between all places. For
the purpose of simulation it was assumed that all rural population had been
grouped into the discrete central places, giving a total population of 41,650.

The ten-median problem was solved using the methods of Maranzana [11]
and Teitz and Bart [16]; places 1, 3, 8, 9, 10, 14, 16, 24, 33, and 42 form the
optimal solution.

THE DYNAMIC ALLOCATION PROBLEM

Suppose that the allocation of demand in the system is controlled by a
behavioral rule that combines the effects of distance with each central facility’s
attraction. A preference model is used arbitrarily in this paper; similar conclu-
sions would apply to a gravity model of spatial behavior. A preference is
defined for each facility at each demand point.

U;= U(Ai’D"i)’

where Uj; is the preference for facility j at demand point i; A, is the attraction
of facility j; and Dy is the distance. The demand P, is then allocated to that
facility with the highest preference.

Consider first the simple additive function

U;=aA;—bD;,

indicating a preference for attractive, nearby facilities over unattractive, distant
ones. b can be set to unity without loss of generality. When a is 0, choice is
determined by distance alone and individuals will allocate themselves to the
nearest facility. The results for the ten places of the ten-median solution are
shown in the first column of Table 1.

The attraction of each place is conceived as having two components, one
exogenous and constant, the other dependent on the demand allocated to each

TABLE 1
Equilibrium Solutions for Varying Additive Choice Rules
Nearest values of parameter a

Center 0.0007-
Center  Allocation  0.0006  0.0009 00010 00012 00014 00016 00018 >0.0018

16 7600 7600 6600 6100 6900 6500 6500 5000 0
42 2900 2000 2900 2900 2900 2900 2400 1700 0
1 1200 1200 1200 1200 1200 1200 1200 1200 0
10 2900 2900 2900 2900 2900 2900 2900 2900 0
33 10850 10850 11850 12350 12350 12750 12750 13450 0
3 1500 1500 1500 1500 1500 1500 1500 1000 0
8 3100 3100 3100 3100 2300 2300 2300 2300 0
9 3400 3400 3400 3400 3400 3400 3400 3400 0
14 7700 7700 7700 7700 7700 7700 8700 10700 41650
24 500 500 500 500 500 500 0 0 0




68 / Geographical Analysis

. place. The latter relationship might operate in several ways. In the short term, a
central facility can be made less attractive by overuse, or crowding, and
possibly by underuse. A similar effect can occur more slowly through a price
mechanism; a low use level for a supermarket can make goods more expensive,
which can lead to higher prices, and hence lower attraction. Much longer-term
effects can be recognized also; a high use level can lead to the physical
expansion of facilities, and thus to a higher attraction.

These effects can be summarized by writing attraction as a function of total
allocated demand:

4=A(Sh) Si-n

where I, is the demand allocated from i to j. When coupled with the behavioral
rule, this equation defines a dynamic system whose state is determined by the
vector of attraction values A;. It is convenient to think of a state space with axes
defined by the A;, so that any system state can be identified with a point in
state space. For every such point there corresponds a set of allocations I;, and
hence a set of total demands Z,I;. When the A; generated by these demands
are equal to the A; that generated the demands, the system is said to be in
equilibrium.

There are algebraic parallels between this model and that of Lakshmanan
and Hansen [10]. In a retail context I, I is related to expected sales at f, and A;
has frequently been equated with retail floor area. Lakshmanan and Hansen
argued that shopping centers should be planned for a certain level of annual
sales per unit of floor area, i.e.

A,.=K§1,.,..

The floor areas A; were defined exogenously, and then applied in a gravity
model to predict ;L. The authors were thus able to select that set of locations
and floor areas that gave the most “balanced” set of sales per unit floor area.

BOUNDARY CONDITIONS

Consider the following example. A number of facilities are to be located to
serve a dispersed population. The pattern of service areas that will result can be
described by a behavioral rule, which depends on an attraction level for each
facility, which is in turn related to levels of use at each facility. When the
facilities are first opened, the population cannot predict use levels and so bases
its choices on distance and the physical component of attraction alone. This
establishes use levels, which in turn modifies behavior. New use levels are
established, and the cycle iterates until an equilibrium is reached.

The time taken to reach equilibrium, the relaxation time of the system, will
vary depending on the example. In some cases use levels may be communicated
through the population without intervening visits to the facility. In other cases
the relaxation time will depend on the frequency of visits, and in others on the
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time required for the physical expansion of facilities. A system of service towns
has an extremely long relaxation time, since attraction is related to the town
population and the number of retail establishments, which responds very slowly
to increasing retail expenditure.

Table 1 shows the results of iterating from this null boundary condition for
various values of the parameter a in the trip utility function. Attraction was
equated with total demand, which is appropriate in the central place example
[2], and in other cases where facilities can be expanded to meet increasing
demand. In each case the iterations converged to an equilibrium point; when a
exceeded 0.0018 one facility expanded to capture all of the demand in the
system. Below a=0.0007 the initial null condition of nearest-center allocation
was also the equilibrium state.

PERTURBATIONS

In general a state space will contain more than one equilibrium point for a
given parameterization of the model. Shocks and perturbations to the system,
which temporarily change one or more attraction values, may result in a return
to the same equilibrium or a shift to a new one. Advertising represents one
possible example of a perturbation. A temporary rise in one facility’s attraction
will modify spatial choice patterns and may increase the total demand at the
facility. If this is sufficiently large, the attraction will continue to increase until
a new equilibrium state is reached. Thus the state space can be partitioned into
a set of domains around each equilibrium point, such that if a perturbation
occurs to a state within a domain, the system relaxes to the respective
equilibrium. Other sources of perturbation include temporary closure, diversifi-
cation of service, and facility expansion. It is also possible for the parameters of
the system to change, as when the payoff between distance and attraction is
altered by changing modes of transportation. The new parameters will change
the geometry of the state space, and the system will relax towards a new
equilibrium. But if the parameters change continuously, a system with a long
relaxation time may never reach equilibrium.

Perturbations were made to explore the geometry of the state space for
a=0.0006. Each attraction value was multiplied by a log-normally distributed
random number using the method of Box and Muller [3]

A',-=A7.exp(o V —2logR, sin27R, ),

where R, and R, are independent uniformly distributed random numbers in the
interval (0,1), and o is a parameter representing the average shock magnitude.

The average absolute value of log(4;/4) is V2/7 o.

The results of one hundred perturbations and subsequent relaxations are
shown in Table 2 for 6=0.25. Ten equilibrium points were found, of which the
unperturbed solution is by no means the most common. For ¢=0.25, the
geometric mean perturbation factor is 1.22.
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TABLE 2
Equilibrium States for Perturbation Parameter 0.25

Center a b ¢ d e f g h

1
16 7600 6600 8300 6600 8300 7300 7600 7300 13600
42 2900 2900 2900 2900 2900 2900 2900 2900 2400
11200 1200 1200 1200 1200 1200 1200 1200 1200
10 2900 2900 3900 3900 2900 2900 3900 3900 3900
33 10850 11850 10850 11850 10850 11850 10850 11850 10350 10350
3 1500 1500 1500 1500 1500 1500 1500 1500 1500
8 3100 3100 3100 3100 3100 3100 3100 3100 2300
9 3400 3400 2400 2400 3400 3400 2400 2400 2400
14 7700 7000 7000 7700 7000 7000 7700 7000 3500
24 500 500 500 500 500 500 500 500 500 500
Frequency 13 23 16 13 16 7 4 5 1 2

DISCUSSION

The number and sizes of domains and the locations of equilibria are affected
by a number of parameters, including the form of the U and A functions, the
geographical distribution of demand, and the locations of facilities. Yet it is
difficult to establish relationships between the form of the system, in other
words the geometry of its state space, and the processes or parameters that
define it. One set of parameters can lead to a number of equilibrium states, and
one equilibrium can result from a number of different sets of parameters.

It is much easier to generalize the factors responsible for overall system
instability. In the previous examples, attraction was allowed to rise indefinitely
with increasing demand, and to decrease to zero when no demand was
allocated (A; = 3;I;). Consider the function A; =35,000+ 0.5%1; —
0.00005(Z; I,;)", which has the form of an inverted parabola. Attraction is finite
at zero demand, rises to a maximum at an optimum level of demand, and then
drops when further demand might result in crowding or diseconomies of scale.
The result is a greater resistance to perturbation in the system, and one
hundred simulations at 0 =0.25 produced only two equilibria, thirty-eight and
sixty-two times respectively.

A measure of overall instability must respond to the number of domains in
the state space, and also to their relative size and proximity. For these reasons
the information statistic

H=— S PlogP,

where P, is the proportion of perturbations that result in a relaxation to
equilibrium state i, is proposed as an adequate measure of instability. H
increases with the number of domains, and for a given number is maximum
when all domains are equally likely to be probed by a perturbation. There are
interesting parallels with the use of H as a measure of stability in biological
systems [8, 12].

7
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The system of Table 2, where attraction was equated to demand, has an
instability of 2.04, whereas the more stable inverted parabola gives a value of
0.66. The form of the utility function has a similar effect on instability. For a
less than 0.0006, only one domain is observed and H is 0. At a=0.0006, H is
2.04, and at high values of a, when each of the ten facilities has a roughly equal
chance of capturing the market, H approaches the theoretical maximum of
log(10) or 2.30.

H unfortunately depends to some extent on the perturbation parameter o,
since the system is more resistant to small shocks than large ones. Because all
perturbations are made from a single state, ¢ controls the distribution of
perturbed states and thus the number and relative frequency of equilibria
found. 0.25 was chosen because higher values failed to expose any new
equilibria.

CONCLUDING REMARKS

Spatial behavior is usually modeled in terms of fixed, exogenously defined
parameters. Distance is a purely physical quantity, and its counterpart, attrac-
tion, is usually represented as some multivariate measure of the characteristics
of each available offering of the good or service. This paper has added a
dynamic element, by suggesting that attraction is often related to the use of a
facility, and thus creates a loop back to the spatial behavior itself. The resulting
model is potentially capable of describing a number of time-dependent spatial
phenomena.

Only the allocation problem has been considered. Location raises a number
of further topics, since it is possible to design the physical attraction of each
facility, to influence system stability, and to control the possibility that any
facility will eventually become either dominant or redundant.
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