(L

CHAPTER 25

Application of a New Model of
Vector Data Uncertainty

G.J. Hunter, J. Qiu, and M.F. Goodchild

INTRODUCTION

In previous papers by Hunter and Goodchild (1996)
and Hunter et al. (1996), a model of vector data uncer-
tainty was proposed and its conceptual design and
likely manner of implementation were discussed. The
model allows for probabilistic distortion of point, line,
and polygon features through the creation of indepen-
dent positional error fields in the x and y directions.
These are overlaid with the vector data so as to apply
coordinate shifts to all nodes and vertices in the data
set to establish new, but equally likely, versions of the
original data. By studying the variation in the family
of outputs derived from the distorted input data, an
assessment may be made of the uncertainty associated
with the resultant information product. The model has
now been developed and tested, and the purpose of
this chapter is to report on its application in practice.

DEVELOPMENT OF THE
UNCERTAINTY MODEL

The uncertainty model involves the creation of two
independent, normally distributed, random error grids
in the x and y directions. These grids are combined to
provide the two components of a set of simulated po-
sitional error vectors regularly distributed throughout
the region of the data set to be perturbed (Figure 25.1).
The assumptions made are (a) that the error for each
node or vertex has a circular normal distribution, and
(b) that its x and y components are independent of each
other. The grids are generated with a mean and stan-
dard deviation equal to the estimate for positional er-

ror in the data set to be perturbed (a prerequisite for
use of the model). These error estimates, for example,
might come from the residuals at control points re-
ported during digitizer setup, or from an associated
data quality statement.

By overlaying the two grids with the data to be per-

" turbed, x and y positional shifts can be applied to the

coordinates of each node and vertex in the data set to
create a new, but equally probable, version of it. Thus,
the probabilistic coordinates of a point are considered
to be (x + error, y + error). With the distorted version
of the data, the user then applies the same set of proce-
dures as required previously to create the final prod-
uct, and by repeating the procedure a number of times
the variability residing in the end product may be as-
sessed. Alternatively, several different data sets may
be perturbed (each with its own error estimate) before
being combined to assess final output uncertainty.
While the model does require an a priori error esti-
mate for creation of the two distortion grids, it is the
resultant uncertainty arising from the use of perturbed
data due to simulation which is under investigation—
hence its label as an “uncertainty” model.

As discussed more fully in Hunter and Goodchild
(1996), the first step in implementing the model is to
determine an appropriate error grid spacing. If it is too
large, the nodes and vertices of small features in the
source data will receive similar-sized shifts in x and y
during perturbation and the process will not be random.
Conversely, if the grid is too small then processing time
isincreased as additional grid points are needlessly pro-

" cessed. Experience to date suggests that an appropriate

spacing be selected from one of the following:
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» the standard deviation of the horizontal posi-
tional error for the source data; or

* adistance equal to an established standard—
for example, 0.5 mm at source map scale
where the data has been digitized; or

* athreshold value smaller than the user would
care to consider, given the nature of the data
to be processed.

Using Figure 25.2 as a guide, the second stage is to
generate the x and y error grids. To ensure the grids
completely cover the extent of the source data, their
dimensions are predetermined by setting a window
equal to the data set’s dimensions, and the cell size
equivalent to the chosen grid spacing. The grids are
created automatically with these parameters and popu-
lated with randomly placed, normally distributed val-
ues having a mean (usually zero) and a standard
deviation as previously defined. It should be noted that
selecting the standard deviation as the grid spacing has
no effect on the random population of the grids. These

new version of
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y error reconstructed
grid topology and
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Figure 25.2. Development diagram for the
uncertainty model.

two grids are only temporary and will require further
refinement before being used to perturb the source data.
To optimize processing time, the number of cells
in the error grids needs to be reduced, since unless the
data set is extremely dense there will be many un-
wanted cells processed during the operation. To
achieve this the original vector data set is converted to
grid format to form a temporary masking grid that only
contains “live” cells—that is, those which the source
data either lie within or pass through. Polygons are
processed as line strings since only their boundaries
are perturbed. Cell attributes that are maintained dur-
ing rasterization are unimportant, given that the grid
is only used for masking purposes and all other non-
contributing cells are given a null or “nodata” value.
At this point there is a potential problem with using
a masking grid that contains 1-cell-wide strings repre-
senting line or polygon features (Figure 25.3). As men-
tioned in Hunter and Goodchild (1996), there is some
likelihood (although small) that the magnitude and
direction of adjacent x and y error grid shifts may cause
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them to overlap, resulting in possible loss of topologi-
cal integrity in the source data when applied to it (for
example, unwanted loops caused by the transposition
of adjacent vertices or nodes). The solution is to filter
any “offending” pairs of shifts, which first requires
that a spread function be applied to the mask grid for a
distance of at least three standard deviations either side
of the initial mask cell (up, down, left and right). A
new masking grid is created during the process and
any previously null cells affected by the operation are
automatically returned to active status. The masking
grid is then overlaid with the initial error grids to pro-
vide reduced versions of the x and y grids that contain
only shift values surrounding features in the source
data. Finally, the error grids are expanded by the width
of a cell on all sides (with null values) to support the
treatment of edge effects during processing.

To test for possible “fractures” between neighbor-
ing shifts (Figure 25.3a), a routine was developed to
test the difference between consecutive cells (in hori-
zontal or row sequence for the x grid, and vertical or
column sequence for the y grid) to determine whether
the absolute value of the difference between them was
greater than their separation distance (Figure 25.3b).
If so, then a “fracture” has the potential to occur at
that location if there are data points nearby and a filter
must be applied to average out the shift values on the
basis of their neighbors. The procedure is iterative and
proceeds until no “fractures” exist in either error grid.

In the final step of the model’s development, val-
ues in the error grids must be transferred to the data
set being perturbed. Naturally, it will be rare for nodes
and vertices in the source data to coincide exactly with
the error grid points, and a method was required for
calculating x and y shifts based on the neighboring
values in the grid. To achieve this, a bilinear interpo-
lation procedure was used in which the x and y shifts
assigned to each point are calculated on the basis of
the respective shifts of the four surrounding grid points.

ing on the basis of neighboring shifis.

An ASCII feature file containing the identifier and
coordinates of each data point was automatically de-
rived, and the four surrounding error shifts were deter-
mined for each point then used to interpolate the shift
values to be applied. A proximity threshold was also
applied to ensure that data points close to a grid point
would automatically receive that points’ x and y shifts
without computation. The distorted coordinates were
then written to an output file and the file topology was
rebuilt. Finally, the attributes belonging to each fea-
ture in the original data set were rewritten to their par-
ent features in the distorted version of the data set.

The entire process runs as an Arc/Info AML script
which calls a random number generator written in C.
The AML program prompts the user for the name of
the file to be perturbed, its data type (point, line, or
polygon), the error grid size, the standard deviation of
the horizontal positional error in the features, and the
number of perturbations required. The code is freely
available at the primary author’s website given at the
end of this chapter.

APPLICATION OF THE
UNCERTAINTY MODEL

Polygon Area Estimation

The first application of the model is a simple one—
estimation of the areal uncertainty of a set of poly-
gons. In this case we took a group of six polygons that
had been digitized from a source map at a scale of
1:50,000. We estimated that the digitizing was per-
formed with a standard deviation of 25 m which was
also the error grid spacing chosen—given that any
polygon boundary segment length less than this value
would have no significant impact upon subsequent ap-
plication of the data. The set of polygons was perturbed
20 times and the results of overlaying the 20 realiza-

“ tions can be seen in Figure 25.4. Then, by appending
the 20 polygon sets and statistically analyzing the ar-
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eas for each of the six polygon identifiers, we were

able to easily construct a table of mean polygon areas

and their standard deviations (see Table 25.1).

Point-in-Polygon Overlay

In the next application we took a set of 30 point fea-
tures and overlaid them with the set of six polygons
used before (see Figure 25.5). The points were deliber-
ately placed near polygon boundaries and junctions. In
the first instance we held the polygon boundaries fixed
(that is, we assumed they had high positional accuracy),
and perturbed the point set 20 times (with an error grid
spacing again of 25 m and a standard deviation of 25
m). As each perturbed point set was overlaid with the
fixed polygon boundary file, we recorded the identifier
of the polygon in which each point was deemed to lie
and appended the point identifiers and their associated
polygon numbers to an output file. When the 20 over-
lays were completed, a frequency count was taken and
the results were summarized in Table 25.2.

We then perturbed both the points and polygons 20
times each and overlaid them a total of 400 (20 x 20)
times—a process that was automated quite simply with
a short AML script. While the two data sets once more
employed an error grid spacing of 25 m and a stan-
dard deviation of 25 m, these parameters are easily
varied by a user and need not be the same—which
would enable perturbation of different data sets with
different errors. The results of the 400 overlays are
shown in Table 25.3.

Polygon to Grid Conversion

In the final application we took the same set of six
polygons, perturbed them 20 times using the same er-
ror grid size and standard deviation as previously, and
converted them to grid cells in order to estimate the
variation associated with both the allocation of poly-
gons to grid cells and total class areas. After each poly-
gon to grid conversion, the number of cells belonging
to the six polygons were counted (since polygon IDs
were maintained during conversion), and the mean and
standard deviation of the number of cells formed from
each parent polygon were recorded. As expected, the
mean number of cells remained within one or two of
the number recorded when the unperturbed polygon
set was converted. However, we believe the standard
deviation of the number of cells is a useful statistic
that could be put to further use as described later. The
results are shown in Table 25.4.

Figure 25.4. Showing the results of 20 perturbations
of the polygon data set when overlayed.

Table 25.1. Showing the mean and standard devia-
tion for the area of each polygon after 20 perturba-
tions (using a standard deviation of 25 m for the
horizontal positional error of the poiygon bound-
aries).

Polygon Mean Area Standard
ID (sq. m) Deviation (m)
1000 891858.3 5419.6
2000 890108.5 9920.3
3000 945221.7 3889.6
4000 358774.9 5407.7
5000 980114.9 6748.4
6000 459806.7 7175.6

DISCUSSION OF RESULTS

From these examples, there are several comments
that can be made with respect to applying the vector
data uncertainty model in practice.

Clearly, it has the potential to help educate users
about the meaning of metadata items that are attached
to a data set. For example, in conjunction with a state-
ment of the standard deviation of positional error, a
diagram such as Figure 25.4 could be included in a
data quality report showing how the data may prob-
ably vary in position according to the meaning of that
error descriptor.

Some useful statistics also arise from the model.
For instance, the class membership frequencies shown
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Figure 25.5. Showing the set of 30 points that were
overlayed with the set of six polygons.

Table 25.2. Showing the observed frequencies for which
each point lies in any of the six polygons after 20 pertur-
bations (for clarity, points lying only in the one polygon
are not listed). Asterisks indicate the polygon in which
the point was assigned prior to perturbation of the data.

Point Poly Poly Poly Poly Poly Poly
1D 1000 2000 3000 4000 5000 6000

2 16* 4 - - - -
9 - 11* - - - 9
13 - 3 17* - - -
17 - - 7 - 13* -
18 - - 12* - 8 -
19 - - 6 - 14* -
23 - - - - 5 15*
27 - - - - 8 12*

Table 25.3. Showing the observed frequencies for which
each point lies in any of the six polygons after 20 pertur-
bations each of the point and polygon data sets, then
overlayed 400 (20 x 20) times (for clarity, points lying
only in the one polygon are not listed). Asterisks indicate
the polygon in which the point was assigned prior to
perturbation of the data.

Point Poly Poly Poly Poly Poly Poly
D 1000 2000 3000 4000 5000 6000

2 290" 110 - - - -

9 - 260" - - - 140
13 - 27  373° - - -
17 - - 156 - 244 -
18 - - 280* - 120 -
19 - - 129 - o71* -
23 - - - - 108  292*
27 - - - - 140 260"

in Tables 25.2 and 25.3 represent quantities that
until now have been quite difficult to define. Cer-
tainly, they have been able to be computed in
certain cases—for example, when classifying re-
motely sensed imagery—but there has been no
ready solution for vector overlay operations. Fur-
thermore, the standard deviations computed for
polygon and cell class areas can serve as input
to formal error propagation computations. For
example, when calculating population densities
we could combine the standard deviation of the
area with that of the population count to yield
the density variance.

The model has the added ability to indicate
portions of a data set that may be highly sensi-
tive to perturbation—thereby warning users that
the data set is potentially unsuitable for use in a
particular region. For instance, in the polygon-
to-grid conversion example above it is suspected
that there is little variance in the number of poly-
gons formed after each perturbation due to the
fairly regular N-S, E-W boundaries of the poly-
gons. On the other hand, polygons with direc-
tion trends at 45° to the cardinal axes might prove
highly variable when perturbed and subsequentty
converted.

Importantly, the model has the capacity (in
certain cases) to be able to turn simulated error
in position into measurable attribute uncer-
tainty—for example, the transformation of poly-
gon boundary error into polygon area uncertainty.
There is also the potential to assess the uncer-
tainty of a final information output after a se-
quence of spatial operations, in which all data
sets have had their positions perturbed to vary-
ing degrees according to their individual accura-
cies. At the same time, we believe that some
problems are ill-posed and not well suited to this
model—for instance, perturbing closely set con-
tour lines where there is a likelihood of the per-
turbed contours crossing each other.

CONCLUSION

This chapter has described the development
and application of an uncertainty model for vec-
tor data which operates by taking an input data
set of point, line, or polygon features and then
applying simulated positional error shifts in the
x and y directions to calculate new coordinates
for each node and vertex. In effect this produces
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Table 25.4. Showing the mean and standard devia-
tion of the number of cells formed from each of the

six polygons after perturbation 20 times and sub-

sequent conversion to grid format.

Polygon Mean No. Standard
iD of Cells Dev. (cells)
1000 355.4 27
2000 356.1 3.5
3000 376.5 2.3
4000 145.3 2.2
5000 385.6 3.4
6000 182.8 26

a distorted, but equally probable, representation of the
data set that can be used to create a family of alterna-
tive outputs, usually in map form. Assessment of the
variation in the outputs can be used to provide an esti-
mate of the uncertainty residing in them, based on the
error in the source data and its propagation through
the subsequent algorithms and processes employed.
The model was tested in several applications, viz: (a)
perturbing polygon boundaries to determine a mean
and standard deviation for the area of each polygon;
(b) perturbing point and polygon data sets prior to
point-in-polygon overlay, which yielded class mem-
bership frequencies for each point; and (c) perturbing
polygon boundaries prior to polygon-to-grid conver-
sion, to generate a standard deviation for the number

of cells in each polygon as a result of the conversion
algorithm.

FURTHER INFORMATION

For further information, readers are directed to the
principal author’s home page where a tutorial contain-
ing AML and C source code exists to implement the
uncertainty model and automatically perturb point, line
and polygon files. The URL is:

http://www.geom.unimelb.edu.au/people/gjh.html
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