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CHAPTER 14

Encapsulating Simulation Models with
Geospatial Data Sets

M.F. Goodchild, A.M. Shortridge, and P. Fohl

INTRODUCTION

Differences exist between real world phenomena
and their digital portrayal in geospatial data sets. There
is general agreement that these differences must be
described and reported along with the data, so that users
can make informed decisions on the fitness of the data
for specific applications. There is “a strong need...to
obtain detailed understanding of how errors propagate
through the large number of possible combinations of
model types, data types, data sources, and kinds of
error, and to make this available to users in an easily
accessible form” (Burrough et al., 1996). Some have
argued that indeed, in the absence of metadata accu-
racy reports, spatial data are virtually useless (Smith
et al., 1996).

Accuracy reporting typically consists of summary
statistics derived from ground measurements upon a
subsample of the data. For land cover maps derived
from remotely sensed images, this might be the per-
cent correctly classified for each category (Lunetta et
al., 1991). For a digital elevation model, the statistic
might be a root mean square error (RMSE) for a set of
locations at which the true elevation is known (Shearer,
1990). These sorts of global measures of uncertainty
are inadequate by themselves for analysis of uncertainty,
since they provide no information about spatial struc-
ture. Indeed, map and data accuracy standards in gen-
eral are not sufficient to characterize the spatial structure
of uncertainty (Goodchild, 1995; Unwin, 1995).

The current paradigm holds that data producers
are responsible for providing such (often inadequate)
summary statistics with their data, and that data us-

ers are responsible for translating these statistics into
meaningful estimates for the suitability of these data
for their applications. Just what users are expected to
make of these summary reports is unclear; how, for
example, does a forester use RMSE to decide whether
a particular elevation data set is suitable for fire tower
site selection? Openshaw (1989) described general
simulation approaches to modeling uncertainty in spa-
tial data for geography, and the past decade has seen
considerable progress. This research supports the no-
tion that the general simulation and error propaga-
tion method is a complete characterization of
uncertainty in spatial data and its effects on analysis.
However, these methods remain both theoretically
and technically challenging to implement for most
spatial data users.

This chapter describes a new paradigm for both data
producers and data users. Under this paradigm, data
producers replace current accuracy information with
an “uncertainty button” in metadata. The button ties
an appropriate simulation method to the data quality
report. In essence, the button becomes the accuracy
metadata; the method replaces the measure. Data us-
ers adopt a new view of spatial data; instead of em-
ploying the original dataset for an application, they
will use one or more realizations to produce a distri-
bution of potential outcomes. By studying this distri-
bution, users gain an understanding of how uncertainty
in the data affects their application. Enhanced spatial
operations in GIS will facilitate this approach to data
handling, and provide more sensitive methods for un-
derstanding what is known about the real-world phe-
nomenon modeled by the data.
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The following section of the chapter reviews the
current metadata accuracy reporting method, and de-
scribes the simulation/propagation approach for char-
acterizing uncertainty. We suggest that this be
substituted for traditional metadata reporting in the
form of an uncertainty “button.” The third section
introduces various data examples to illustrate the pro-
posed approach. The chapter concludes with a dis-
cussion of prospects and challenges for this
framework.

METADATA CHARACTERIZATION OF
SPATIAL DATA UNCERTAINTY

Much spatial data production, particularly that of
federal government agencies like the USGS, is now
impacted by a range of metadata specifications. The
objective of the development of these specifications is
to enhance the sharing of spatial information, to en-
courage consistency in data generation and use, and
to reduce redundancy in data compilation (SDTS,
1996). Government agencies engaged in spatial data
production subject their data to accuracy assessments,
typically disqualifying any that fail to meet quality
specifications and reporting summary information
from the assessments in metadata reports for data us-
ers. These reports summarize the quality of the data as
it relates to some predefined specification. As an ex-
ample, consider a USGS level 2 digital elevation model
(DEM). An approved DEM file must have an RMSE
of less than one-half of the source contour interval,
with no error exceeding one contour interval (USGS,
1995). With regard to these reports, then, producers
are primarily concerned that their data meets a some-
what abstract measure of accuracy.

In contrast, data users are normally not interested
in the accuracy of the data set itself, but rather in the
spatial phenomenon that the data set imperfectly rep-
resents. They need to know how imperfect this repre-
sentation is, as it relates to their applications. Consider
a forester who wishes to use a USGS DEM to help
identify promising sites for a new fire tower. The for-
ester has calculated the size of the viewshed for a set
of locations, and is interested in determining how
closely the calculated viewshed matches the actual
viewshed at these sites. That the RMSE for the quad-
rangle does not exceed 7 meters is not a detail which
the forester can easily use to determine the quality of
the viewshed calculations.

Indeed, analytically deriving the uncertainty of spa-
tial attributes is frequently difficult or impossible.

Figure 14.1. Land parcel; positional uncertainty of
corner points indicated by circles.

Consider the relatively simple case presented in Fig-
ure 14.1. The area of the rectangular land parcel is
defined by four corner points. According to the sur-
vey, these points are arrayed in a square one hundred
meters on a side. However, the surveyed points are
subject to positional uncertainty; this uncertainty is
characterized by a Gaussian distribution with a mean
of zero and a standard deviation of 10 meters, as de-
picted by the dashed circles. The application question
is, what is the standard error associated with the area
of the land parcel, given the positional uncertainty in-
formation?

In fact, this can only be calculated directly from
the available information with some difficuity (Griffith,
1989). However, the standard error may be estimated
more simply through a Monte Carlo simulation proce-
dure, which would proceed as follows (and as illus-
trated in Figure 14.2). Positional error is simulated for
each corner using a distribution meeting the criteria
specified above. The resulting quadrilateral is a po-
tential realization of the actual parcel. The area of this
quadrilateral is calculated and stored. Then, positional
error is simulated again, and the area is again noted.
This process is repeated a large number of times. For
each realization, uncertainty in position of the corners
is propagated to variation in parcel area. By analyzing
the resulting distribution of area measurements, one
can estimate the standard error and characterize the
variation in area due to the positional uncertainty of
the corner points. Figure 14.3 portrays a histogram of
areal estimates derived from 100,000 simulations. The
simulation method is general, in the sense that uncer-
tainty can be propagated to answer other questions as
well. For the parcel example, the following questions
might be of interest and could be answered: what is
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Figure 14.2. Error propagation approach.
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Figure 14.3. Distribution of parcel areas from 100,000
simulations. Mean is 10,000.4, standard deviation is
1427,

the chance that the parcel area is smaller than 9,000
square meters? How likely is it that more than 10% of
the parcel is actually in the floodplain? A working pro-
totype for this example is available on-line at:

http://www.ncgia.ucsb.edu/~ashton/demos/
propagate.html

These examples——the dilemma of the forester, as
well as the parcel area puzzle—illustrate that traditional
metadata summaries generally fall short of providing
adequate measures of spatial data uncertainty to the
user. The general Monte Carlo propagation approach
demonstrated above, coupled with data-specific un-
certainty simulation algorithms, appears to be the most
adequate way of expressing what is known about some
spatial phenomenon by combining the data collected
about the phenomenon with relevant data quality in-
formation (Heuvelink et al., 1989; Fisher, 1991; Lee
etal., 1992; Englund, 1993; Ehlschlaeger et al., 1997).
For characterizing the uncertainty due to imperfect
spatial data in many applications, the user requires a

set of equally probable simulations of the spatial phe-
nomenon rather than an incomplete set of summary
statistics and a data set known to be in ervor. In a sense,
the simulations themselves become the uncertainty
metadata, since the user can see the variation between
them, as well as the distribution of application results
across the realizations.

We propose that the responsibility for providing
these simulations—as with metadata in general—rests
with the data provider, not the user, since the provider
has much more information concerning the quality of
the data and is more equipped to perform an accuracy
assessment sensitive to measuring spatial patterns of
error. Additionally, simulation theory and techniques
are challenging topics for most spatial data users,
whose areas of expertise liec more typically with the
phenomenon the data represent. The data producer can
bridge this knowledge gap for the user community by
encapsulating an appropriate simulation method within
the metadata accompanying the spatial data set. At the
U.S. federal level, at least, the mandate for this exists;
data quality specification documents emphasize the re-
sponsibility of USGS data producers to “report what
data quality information is known,” so that users can
make informed decisions about the applicability of the
data for their applications (USGS, 1996).

What would such a metadata record ook like? Fig-
ure 14.4 shows what might appear on the computer
monitor when a user is electronically browsing a spa-
tial data library. An “uncertainty button,” following
the GIS error handlers of Openshaw (1989), replaces
the usual statistic or table. A short simulation algo-
rithm replaces a line or two of text, or a number, in
the record. When the user presses this uncertainty
button, the specified number of simulations are gen-
erated using the producer-specified uncertainty model
and simulation algorithm. These simulations are then
processed by the user’s GIS and a distribution of re-
sults is returned.

GIS operation functionality must be enhanced to
effectively incorporate this information about uncer-
tainty from the many data realizations. It is obvious
that the main difference in computation is that the same
operation must be performed n times, where # is the
number of realizations. A somewhat more difficult step
is deciding what the operation should return. Table
14.1 presents three very typical results from a GIS op-
eration in the left-hand column. The central column
suggests what the results might be from a compound
operation, performed upon a set of realizations. The
final column provides an example of each type of op-
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Figure 14.4. Example metadata browser window. Click-
ing the “Simulate” button generates DEM realizations for

uncertainty propagation.

Table 14.1. Output from Different GIS Operations upon Uncertain Spa-

tial Data.

Traditional Result Incorporating

Result Uncertainty Information Example

Number Mean, Standard Deviation Query: Polygon Area
Object Probability Field Calculate: Buffer
Surface Animation Frames Generate: Cost Surface

eration. The extension of GIS functionality necessary
for the implementation of uncertainty propagation is
beyond the scope of the present work, but it is cer-
tainly realizable.

ILLUSTRATIVE EXAMPLES OF THE
APPROACH

The previous section introduced a concept for in-
corporating uncertainty simulation directly into the
metadata associated with an individual spatial data file.
Three examples are presented here to indicate how this
general method could be implemented. Point, line, and
surface area data models are represented in these ex-

amples, to demonstrate the breadth of spatial data types
that are amenable to this approach.

Scattered Point Data

The first example is a map of tree locations in a
forest. Studies of seed dispersal for this species of tree
indicate that the maximum range of dispersal from any
individual is 100 meters. The data consist simply of
the coordinate locations for each tree. Spatial uncer-
tainty in this data is limited to the positional uncer-
tainty of these coordinates. For simplicity, we assume
that the organization producing these data has deter-
mined the positional uncertainty to be isotropic, with
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a Gaussian distribution centered on each observed lo-
cation and a specified standard deviation. Uncertainty
is independent for each point. An application question
for these data is, given the uncertainty in the tree loca-
tions, how likely is it that all tree locations are within
100 meters of one another?

Coastline Data

The second data set is a vector coastline for a sec-
tion of the central California coast near Point Concep-
tion. The data set itself is a “mean line,” an average of
several coinciding coastline data sets. Of potential
importance is the notion that the mean line is not itself
a potential coastline, due to the smoothing effect of
the averaging (Goodchild et al., 1995). Many applica-
tions may require coastlines of statistically realistic
texture rather than the smoother mean. The genera-
tion of such coastlines from the mean line requires
simulation of removed variation, and is complicated
by the prospect that this variation is spatially
autocorrelated. The simulation model proposed in
Goodchild et al. (1995) uses a distance decay expo-
nent and a range parameter to characterize spatial
autocorrelation of the variation about the coastline.
Their model is considerably more complex to imple-
ment than the preceding point data model. However,
the byte size of the algorithm code itself is not large,
and could easily be transmitted with the data. An ap-
plication question of interest is, how long is this stretch
of coastline? A mean length (which is not equivalent
to the length of the mean coastline), and standard de-
viation is returned.

DEM Data

The third example uses digital elevation data. The
data set is a subset of the USGS one-degree DEM, Los
Angeles-west. Studies comparing these data to higher
resolution and accuracy collocated 7.5° USGS DEMs
have developed measures of mean and variance of the
difference, and of the spatial structure of this differ-
ence (Ehlschlaeger et al., 1997). An uncertainty model
has been developed that uses this information to pro-
duce realizations of the difference surface. Each dif-
ference surface realization is then added to the
one-degree DEM, creating a statistically probable
simulation of the “actual” 7.5° DEM-quality surface,
If 7.5 DEM data are adequate for a particular appli-
cation, then this model creates a set of potential real-
izations of adequate surface representations. This is

an unconditional simutation, meaning that no locations
on the DEM are necessarily spared from perturbation.
An application question for these data is, what is the
expected cost of a least-cost path traversing the ter-
rain, where cost is a function of path length, path steep-
ness, and elevation range of the path?

In each of the three cases, the uncertainty model/
simulation algorithm is encapsulated in the metadata
in the form of a simulation button. Users pressing this
button generate a series of simulated data sets. Through
the error propagation approach, the questions proposed
in these illustrations, and many others, can be an-
swered. These answers come with confidence inter-
vals or other measures of reliability, providing a more
realistic depiction of the effects of data uncertainty on
the application question.

DISCUSSION

Taken together, the three data examples are repre-
sentative of much of spatial data. We chose two dif-
ferent object data models and a field data model. The
simulation models chosen are also representative.
While the first, operating on the point data, was spa-
tially independent for each location, the remaining two
simulation models directly accounted for spatial de-
pendence in the error field. The approach advocated
in this chapter is very general and extendable to any
spatial data set that can be stored in a computer and
can be assessed for its fidelity to the phenomenon it
represents.

Several critical issues present themselves. The first
is the choice of spatial uncertainty model. A growing
body of research on spatial uncertainty modeling in-
dicates the diversity of approaches, methods, and re-
sults. In the face of such diversity, how is a data
producer to choose the most acceptable model? On
the other hand, how is the resource manager, the ecolo-
gist, or the environmental engineer to choose? These
users undoubtedly lack expert knowledge about both
the data collection methods employed by the data pro-
ducer and the spatial simulation model theory and
implementation in vogue with spatial information sci-
entists. By working with uncertainty modelers, data
producers are in the best position to decide upon the
most effective simulation approaches for specific spa-
tial data sets. Data users can have increased confidence
both in the uncertainty simulation models and in the
data itself. Research on simulation model efficacy must
be done to enable data producers to make informed
decisions about which models to use, and to indicate
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needed changes to accuracy assessments to accommo-
date model requirements.

A second research topic concerns the distribution
of computer processing for simulations. Data will be
stored and queried in digital libraries. However, when
the user wishes to check the uncertainty of the data,
and “clicks the button,” what should actually happen?
One possibility is that the library maintains a large
number of stored realizations for each data file. This
seems unwieldy, particularly in light of the continu-
ing rapid increase of processor speed. Instead, realiza-
tions could be generated on the fly. Where should the
generation occur—at the library site or on the user’s
machine? From a computational perspective, it might
make sense for the processing to occur on the user’s
machine. In this case, users would download the data
file, bundled with an executable simulation routine,
and generate simulations locally.

Geographic information systems algorithms re-
quire some modification under this paradigm, since
they must work on multiple realizations and return
meaningful, clear results. Table 14.1 identifies some
relatively straightforward outputs of traditional op-
erators and their “uncertainty-enhanced” counterparts.
Research topics remain; for example, how will this
method fare in compound spatial analysis, in which a
large number of input data layers are combined us-
ing numerous spatial operations? How can the out-
put of one GIS function easily be used as the input to

another? How can the contribution of uncertainty -

from different spatial sources be easily quantified and
expressed to the user? Significant representation is-
sues arise as well. How can information about uncer-
tainty best be communicated and understood? Which,
if any, spatial models are especially resistant to ef-
fective characterization and communication of un-
certainty?

Traditional metadata accuracy reports must change.
Those who use spatial data increasingly demand to
know how reliable their GIS results are, and standard
accuracy statistics are inadequate to supply answers.
Simulation-based uncertainty models have been de-
veloped for spatial data, but they remain difficult to
understand and utilize for most end users. We have
argued that the producer, not the user, should be re-
sponsible for providing adequate measures of spatial
data uncertainty; by adequate, we mean encapsulating
the simulation algorithm with the data set. This ap-
proach was demonstrated on three representative il-
lustrations. While many challenges remain, we believe
that this chapter has introduced and demonstrated a

viable, general solution for adequately reporting spa-
tial data uncertainty.
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