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Abstract

This paper reviews the modeling approach to characterize spatial uncertainty and examines the
prospects and challenges for developing statistically based uncertainty models for comprehensive
global datasets like the Shuttle Radar Topography Mission (SRTM). Under this paradigm, data
become integral inputs to models which characterize phenomena, rather than the primary
representation of phenomena. One challenge is the identification of high quality, well distributed, high
accuracy data necessary for developing the uncertainty model. A second challenge is distribution of
the extensive processing for the simulation. A final challenge is producer and user acceptance of a
new way of looking at the relationship between data and real-world spatial phenomena. How can
geographic information science facilitate such a paradigm shift?

1. Introduction )

The notion that many social and environmental phenomena are global in scope has gained general
acceptance in the last few decades. Today, the general public is aware that individual human impacts
on local scales are collectively contributing to global environmental change. To understand global
scale phenomena and their importance for humans and the environment, scientists and policy makers
require accurate information about the state of the planet. Until very recently however, extant spatial
datasets were insufficient for global characterization of the most basic environmental factors.

This decade has seen the wide release of several important datasets with global coverage of
satisfactory spatial resolution, and more will be available in the next 3-5 years. Several of these
datasets are discussed in this paper § second section, including the Shuttle Radar Topography Mission
(SRTM) which will produce a digital elevation model (DEM) at three arc second resolution for much
of the land surface of the planet. They are already being used for a wide variety of applications: global
process modeling input parameters, navigation in northern Russian waters, continental scale
cartography linework, archeology in southern Africa, and as base map data for national GIS projects in
developing nations (Smith & Langaas, 1995). On the one hand, the wide array of valuable uses
highlights the utility of such datasets. On the other hand, this breadth poses a serious challenge for
geographic information science: how can the quality of globally extensive datasets best be
characterized for so many potential uses; how can the reliability of application results that employ
them be assessed?

A relatively extensive body of research is concerned with characterizing and modeling spatial
data uncertainty. The underlying theory, discussed in the third section of this paper, offers robust and
general approaches which have been applied experimentally at local and regional scales. This paper
covers three fundamental challenges for employing these approaches for global scale spatial data sets.
Although these challenges are generally applicable for any phenomenon measurable at any point on
the planet, the discussion will focus on elevation. First is the necessity for very high quality $round
truth” information at point locations scattered across the globe. How can well-distributed arrays of
such points be developed? In the fourth section we discuss the prospects for using existing global
datasets of spot elevations for characterizing uncertainty in global high resolution DEMs.

The second challenge is the distribution of the processing required for the current approaches to
characterizing uncertainty. These approaches involve the development of an uncertainty model, the
generation (through Monte Carlo simulation) of alternative realizations of the phenomenon, and the
propagation of uncertainty through a GIS operation. Simulation can be done by the producer on
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servers, either pre-processed and stored in advance or generated 9n the fly” as requests are received.
Alternatively, processing can become the task of the data user, if appropriate models and algorithms
are made available with the data. These three approaches to data distribution are covered in the fifth

section.

A third challenge is producer and user acceptance of a new way of looking at the relationship
between data and real-world spatial phenomena. Data become integral inputs to models which
characterize phenomena, rather than the primary representation of phenomena. The paper concludes
with some thoughts on this substantial paradigm shift.

2. Some global terrain dataset accuracy specifications and some
problems

The Digital Chart of the World (DCW) consists of vector layers representing a variety of political,
human, and natural features on the land surface of the globe. Of particular interest for this paper are
the elevation contours and spot heights (ISCGM, 1996). This dataset was compiled from the
Operational Navigation Charts (ONC), a 1:1,000,000 paper map series compiled by the US Defense
Mapping Agency and others. The ONCs were developed over a period spanning several decades to
support aircraft navigation worldwide. Accuracy of contours and spot elevations is divided into
horizontal (positional) and vertical components in the specifications. The horizontal accuracy of
contours and spot heights derived from the ONCs is 2,040 meters, rounded to the nearest 5 meters at
90% circular error” (ISCGM, 1996). The absolute vertical accuracy statement for contour elevation
data is 650 meters at the 90% confidence level, though empirical tests indicate the data is much more
accurate, at about 160 meters (USGS 1997). For spot elevations the vertical accuracy is 30 meters
(ISCGM, 1996).

The second global dataset containing elevation information is GTOPO30, a 30 arc second
(roughly 1 kilometer) resolution raster DEM. A variety of elevation sources were used to compile
GTOPO30, including 3 arc second data wherever possible and DCW contours and spot heights. DCW
vector hydrography was employed to convert the hypsography to a raster format. Accuracy at any
location is related to the data source for that location, and therefore varies widely across the dataset,
from an estimated 9 meter RMSE in New Zealand to an RMSE of 304 meters in Peru. GTOPO30
documentation attempts to link the DCW contour accuracy specification to an RMSE; by assuming
that error is normally distributed with a mean of zero, an RMSE of 97 meters is estimated (USGS,

1997).

A third source is the forthcoming global DEM derived from the Shuttle Radar Topography
Mission (SRTM). This mission is scheduled for launch in September 1999; following the 11 day
mission to collect interferometric radar data, processing will take one year. The result will be a
publicly available 3 arc second (very roughly 100 meter) resolution raster DEM for the earth s land
surface between 60 degrees north and about 60 degrees south. (NASA, 1999a).

The accuracy specification for this product is that of DTED level 2: absolute vertical accuracy
(90% Linear Error) is 16 meters (NASA, 1999b). However, actual accuracy of the product will be
determined and reported during verification. The elevation data will be released with estimates of
random and systematic error for each height posting. This will be the most comprehensive amount of
accuracy information ever released with a DEM series.

Accuracy information presented above for elevation data on DCW and GTOPQ30 is really
quality specification; such accuracy specifications reflect the important requirement of maintaining
consistent quality standards in the map production process. However, they are insufficient for
identifying a dataset’s fitness for uses other than those originally intended. This problem is
compounded for global datasets, for which the potential range of applications goes far beyond what
data producers can foresee. For example, elevation contours might be adequate for topographic
feature recognition at 35,000 feet (an original intent of the ONC map) but be entirely unsuitable for

modeling drainage basins.
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.> second problem with these specifications is that they do not describe elevation error
sufficiently. Three assumptions are implicit in both the DCW and the GTOPO30 accuracy statements:
that error does not vary across the region in any systematic way (so a single global measure mw
mnonvﬁ_u_av. that error is unbiased (and probably normally distributed), and that elevation errors are
independent (errors at nearby locations are uncorrelated). Experimental research with many elevation
datasets has shown that these assumptions are typically invalid even for fairly small regions
(Ehlischlaeger et al., 1997; Fisher, 1991). For global datasets, they can certainly be dismissed.

3. Uncertainty modeling and propagation

c:Snum.sQ modeling approaches the problem of accuracy specification from a much different
perspective than the production oriented statements discussed in the previous section. Discrepancies
cm@mo: a.w:_.m.a actual terrain are more fully characterized by uncertainty models, which explains
their application to many environmental datasets including DEMs (Heuvelink et al., 1989; Fisher,
1991; Lee et al., 1992; Englund, 1993; Ehlschlaeger et al., 1997). Conceptually, this :..Sam_im,
approach treats a surface (here, an elevation surface or an elevation error surface) as a realization of a
S:%..E function. The random function is comprised of a set of random variables with spatial
locations <<.:Omo dependence on each other is specified probabilistically. The distribution for each
_.Ea.o:_ variable is estimated from nearby points for which values are known. Proper estimation of the
mwm:m._ structure of the surface is critical, since these models use distance and direction from known
_on.m:oa to identify the distribution of elevation or elevation error (see Goovaerts, 1997; Isaaks &
Srivastava, 1989, for extensive discussion on the geostatistical approach). . '

B m._n<wzo= may be known at a set of points within the study region; for example, a global
uom_:.oa_:m system (GPS) could have been used to sample several dozen locations within a m.E&\ area.
Conditional methods ensure that the surface model passes through these locations, fionoring” :ﬁ.
ground truth data (Goovaerts, 1997). In other cases, true elevations may not be u<m=mv_m within the
B,ou.om interest, but error characteristics are known. Perhaps they are derived from data quality
specifications, though these would have to include not only aspatial characteristics like RMSE, but
also measures for the spatial structure of error and any correlations between error and slope, or mqoq
Ea. absolute elevation. Altemnatively, they may be assumed to match those of nearby qmwmonm for
which this information is available. Unconditional methods are useful in either circumstance, and are
used to .c._:a error surfaces which are then added to the elevation data. Such methods m_.m termed
unconditional ' because no elevations are specifically honored; instead, elevations at all locations on
the surface are perturbed (see for examples Ehlschlaeger et al., 1997; Hunter & Goodchild, 1997).

) Regardless of form, an uncertainty model may be employed to characterize uncertainty in a
mmw:.w_ awﬁmor Various forms of kriging use the uncertainty model to develop a map of the most likely
a_m..:c:cou o.m the phenomenon, given the available information. Kriging also produces a map of the
variance, which provides some notion of the uncertainty in the estimate at each location. For many
.wvn__nw:o:m. a better approach may be to propagate data uncertainty through the analysis to identify its
impact upon the results of the application. This is accomplished by producing, via Monte Carlo
m._sc_m:ozg a ma_ﬂ_ of _wniﬁogc_m realizations of the environmental phenomenon. The application is
en run upon all realizations, producing a distributi ion i
renonted o Fraure 1. P g a distribution of results. The general model of propagation is

m::.c_wﬂ.na DEM Distribution of
realizations outcomes

analytic
operation

v
v

Figure 1. Propagation of uncertainty through a spatial analysis using DEMs.
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Geographic information systems require some modification under this paradigm, mm,nno g.raw
must work on multiple realizations and return meaningful, clear results. moio n.vm Eouo.ao&mnm:ozm
are technological and computer-based; GIS must accommodate multiple realizations of input data and
produce different forms of output (Openshaw, 1989, Shortridge, 1999). Qrmwm are conceptual and
human-based; input becomes a set of realizations, phenomena are stochastic, Eﬁ.am_ output numbers
become distributions and maps become animations. Table 1 identifies some relatively straightforward
outputs of traditional operators and their uncertainty-enhanced 'counterparts.

Table 1. Output of different GIS operations upon uncertain spatial data.

Result Incorporating | Example
Traditional Result | Uncertainty Information
Number Mean, Standard Deviation Query: Polygon Area
Obiject Probability Field Calculate: Buffer
Surface Animatjon Frames Generate: Cost Surface

While the modeling/propagation framework presented here is in:. developed .ﬁroc_.o:om:w and
practically for regional datasets, its application to global amnwm.mﬂ ::mn:m_nq evaluation has not wmn.s
closely examined. In the next section, the problem of identifying suitable ground truth measures will
be explored, focusing particularly on elevation.

4. Global ground truth y ,
High quality, well distributed sample data are required to develop good 8:9:0:»._ :1832:@ models
for spatial datasets like elevation. Ideally, these points mroc_.a be E-.aoa_v\ distributed across the
region. The sample should statistically match the population; _m m_o«m:o: <m_=.mm. were only mw:._m_ma
from valley floors, lack of information about peaks and ridges will bias the statistics. Many locations
should be near other locations so that good models of spatial autocorrelation can be developed. The
spatial distribution of the points should also ensure that no _mqmo. _‘nmmos. is :E.mno.:an_. For local or
even regional study areas in some parts of the world, such data exist or might conceivably be collected

by the researcher.

For datasets of global extent, however, it is clear that the potential for sample a.m,w is limited to
existing spot height data or future international surveys. We now consider an existing source to
highlight some challenges for obtaining global ground truth.

An easily obtainable set of global spot elevations is available in DCW. ,H.Em.mmgmm" aco.m not
appear to be accurate enough for use with the 3 arc second mW.—.K DEM. The vertical RMSE _m.uc
meters, and the positional accuracy is not good. The accuracy .:._mE be wnomzmﬁ for use modeling
GTOPO30 accuracy, though in many areas GTOPO was created using these points. A second problem
is that DCW spot height locations are not randomly distributed, since many are now_n.m. mm:. a 30 arc
second (1 km) global DEM an ideal set of spot elevations would include many pairs within a few
kilometers of one another so that short-range correlation could be adequately .:_oam_na. DCW spot
height locations are rarely so close. Additionally, the ideal density of the points for even a 30 arc
second DEM would be relatively high - something like 100 points per one n_.mm_‘om square, or very
approximately I point for every 120 km*. The DCW Eﬁmww_.wv__« spot rm_m:ﬂ are quite sparse
regardless of where in the world one is. For example, the ratios of km*/# spot heights for Belgium,
Senegal, and Mongolia are 1900 km?/pt, 1770 km?/pt, and 1150km?/pt, respectively.

An alternative approach to conditional simulation is to develop a :..oao_ using amn.m in one part
of the world and apply it to another part of the world for which elevation m:a. m_mﬁﬁo: error are
believed to have similar properties. For example, adequate high n:»:@. spot heights E_msm exist @.
developing a robust uncertainty model for terrain in the Rocky Mountains of North America. This
model could then be applied to similar montane regions in parts of 5.@ world 5‘.03 ground truth H._NS
are sparse. This approach has the advantage of making the uncertainty modeling approach feasible

62

with currently available high quality spot height information. Existing data could be employed to
rapidly develop models, even in the absence of quality data in some parts of the world. The most
significant disadvantage is the necessary assumption that error properties are consistent between
regions.

Even if a very high accuracy, global, well distributed set of spot heights were available,
problems remain. Chief among these is identifying the comparability of these spot heights to the
elevation measures in a global DEM. In global elevation data, the precise meaning of the values is
often not well defined. Consider the GTOPO30 definition for each posting. In areas derived from 3
arc second data, the elevation is Yepresentative” of the 100 3 arc second postings within each 30 arc
second region. In areas derived from DCW contours, the final elevation is interpolated from vector
data. In either case, the elevation is a generalized average (not a well-defined average) that can not be
directly evaluated with the real-world terrain it purports to represent. The most obvious approach to
evaluation is to compare the GTOPO30 value for a particular location with a high quality
measurement for that location and to treat the difference as error, although this is not strictly correct,
since the underlying spatial data model is different. DEMs are certainly not the only type of data with
this fundamental measurement problem; land cover data sets are particularly subject to it as well,
Further research is warranted to identify how such data can adequately be compared with reality, and
how their uncertainty might best be modeled.

Once an uncertainty model is developed, the problem arises as to the distribution of simulation
processing. The next section covers this issue.

5. Distribution of Processing

Developing a feasible approach for the distribution of computer processing of simulations is critical.
It is clear that global data will be stored in and retrieved from digital libraries, and that application
processing will take place on users ' computers. There are several possibilities for when and where
simulation could occur:

¢ the library could store a large number of realizations of the global data set.

¢ the library could generate realizations on the fly as they are requested by users.

¢ the library could transmit the model with the data; users would generate realizations locally.

Under the first two options, the user would request some number of realizations. Realizations
would be either retrieved or generated and transmitted via Internet, tape, or CD to the user. The user
would then employ these realizations in the propagation schema presented in Figure 1. The relative
advantage of one option over the other relates to the tradeoff between storage space and processor
speed. Option One entails orders of magnitude more storage than the global dataset itself, while
Option Two requires large amounts of processing by the library. Both options require that large
quantities of data be transmitted. Consider a user request for 100 realizations of a 5x5 degree tile of
SRTM 3 arc second data. In total this request returns 3.6 billion elevations; one only hopes the user is
not downloading over a 56K modem!

Therefore the third option seems preferable. In this option the DEM is bundled with an
executable simulation routine and any other data and transmitted to the user. Realizations are
generated locally and processed through the application model as in F igure 1. While the processing
required to develop realizations is substantial, it is no longer practically insurmountable given current
technology. Tens of realizations of sizeable datasets (>20,000 points) can be produced using public
domain geostatistics software on Pentium Il-powered personal computers in under a minute.

A second advantage to this option is that users could be enabled to develop their own
uncertainty models from the data and model parameters provided. For example, suppose a user was
especially interested in a one degree portion of a 5x5 degree SRTM tile. If the user obtained the

$round truth” data for this block (say, 6000 random spot heights), the user could construct a different
variogram model than that developed for the whole tile, and the resulting uncertainty model might be
preferable for the application.
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6. Conclusion

For the approach advocated in this paper to be accepted, producers and users of global data must agree
that it is both practical to bring about and that the implementation pain inflicted is offset by the
knowledge gain afforded. We argue that the approach holds significant advantages for both producers
and users.

Data producers are in the best position to decide upon the most effective uncertainty models for
global spatial data sets, and to allocate resources to implement these models. Their responsibility to
do so is clear. United States government data producers, for example, have a mandate to, feport what
data quality information is known”, so that users can make informed decisions about the applicability
of the data for their applications (USGS, 1996). Truly achieving this responsibility using traditional
data accuracy statements is not possible, while the approach described here is general, meeting the
mandate regardless of the multitude of possible uses of global data.

Most spatial data users find spatial statistical theory and techniques challenging topics, since
their areas of expertise lie more typically with the phenomena the data represent. The data producer
can bridge this knowledge gap for the user community by developing a standard modeling method
within the metadata accompanying the spatial data set. The adoption of the modeling/propagation
approach requires changes in the way processing is performed and results are analyzed, but these
changes will result in increased confidence in the models, the data, and the application results.

Perhaps it is human nature to treat the world as if it is made up of discrete elements, that
phenomena can be described crisply with precise numbers. Consider: the Indian city of Bangalore had
4,130,288 people in 1991; the average wind speed in Chicago, USA is 16.7 kph; Asia’s mean
elevation is 910 meters (Rand McNally, 1997). But, measurement is often not so accurate or precise.
More fundamentally, spatial data collection requires that abstracted representations of the earth be
developed, immediately creating mismatches between environmental phenomena and the data about
them. Under such circumstances, scientists have long accepted that often the best results are
stochastic, that estimates without probabilities are less useful. For decision making, the utility of
confidence intervals has also been recognized. Here we have argued that the probabilistic view can be
usefully extended to modeling spatial phenomena like elevation, and that these more realistic
characterizations of the earth lead to more realistic results for projects and models requiring global
spatial information.
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