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Abstract. Many route-location problems can be regarded as the minimisation of some accumulated
cost, impact, or similar friction per unit length. - Analogies can be found with paths of light and

other least-time paths, and with geodesics. The problem is otten solved by finding a path through a .

lattice of sample costs. with the use of modified. shortest-path algorithms. Lattice paths do not
converge to continuous-space paths. The differences are shown to depend on the set of permitted
moves in the lattice, with the use of three cases. The continuous-space problem is solved for
surfaces described by simple functions and for choropleth surfaces, and compared with lattice
solutions. Three heuristic approaches for large problems are reviewed. with emphasis placed on
regular -spatial aggregation.

Introduction .

The selection of rights of way tor highways. transmission lines. and other utilities
inflames public opinion more than almost any other locational issue. The need for a
corridor is largely established at and beyond the points which it must connect. so
that land along the route must be sacrificed to a distant rather than a common good.
Furthermore the location of each segment of the route is not independent of other
segments. which makes it difficult to accommodate local objection on a pragmatic basis.

The problem has been tormalised (Hopkins. 1973: Turner and Miles. 1971: OECD,
1973) as one of finding that path between a given origin and a destination. that
optimises an objective function based on construction. environmental, social and
other costs. and possibly benetits. This does not solve the decisionmaking problem.
of course, since it may be just as difficult to reach consensus on the criteria for route
selection as on the route itself. But the ability to make this conceptual connection
objectively is clearly usetul to any party in the planning process.

[t is convenient to regard the cost per unit length of construction as a surface over
the study area. The optimum- path will then tend to foilow. the valleys and passes of
the surface in such a way that the integrated cost over the length of the path is
minimum, although it is clear that the path of least total cost is not necessarily the
one with the lowest maximum elevation. Algebraically, the path is defined by '

min J zds .,

. path
where z is the local cost per unit length of path. and ds is an increment along the path.
Clearly the optimum path on a flat surface is a straight line.

Several problems are analogous to this one. Angel and Hyman (1976) review the

problem of minimum-time trip paths in cities,

_ [‘ds
min | — .
v

Y

path
where v is the local velocity; whereas the path of light in a medium with local
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refractive index u is defined by

. ds
mmJu?.

path

where ¢ is the velocity of light in a vacuum. .

Analytic solutions of the problem are limited to a few simple cases. such as the
radially symmetric z functions of Angel and Hyman (1976), or the binary problems
treated in optics. More general problems must be solved by numerical integration.

In cases where z or its equivalent is everywhere known, the construction due to
Huygens (see, for example, Warntz, 1965) may be used, although it is difficult to
adapt the method to a digital computer. But for a number of practical reasons the
minimum-cost problem has been approximated by representing the surface as a
rectangular lattice of sample values, and by finding the path as a series of moves ,
between nodes in the lattice (Hopkins, 1973; Turner and Miles, 1971; OECD, 1973).
“First, there need be no restrictions on the forms of surfaces handled in this way.
Second; the use of sample values is probably more consistent with methods of data
collection than is a continuous surface. And third, sampling introduces a level of
spatial resolution which can be adjusted to the needs of the study and the width of
the proposed corridor.

Adopting this form of numerical integration allows the problem to be handled as a
case of finding the shortest path through a network, by discrete dynamic programming.
The links between nodes define the moves permitted in the lattice, which may be
vertical, horizontal, or diagonal. Figure | shows a typical square array of costs, in
reality measures of impact on agricultural land from a proposed highway, and the
minimum-impact path between two points (Owens, 1975). In this case moves were
permitted to eight nearest neighbours from each node.

This paper examines several aspects of the lattice technique. There are regularities,
not present in the general shortest-path problem, which permit modifications to
conventional algorithms, with consequent economies in storage and computing costs.
The paper also examines the relationships between lattice solutions and paths on
continuous surfaces, and the extent to which one approach provides an approximation
to the other. The final section describes heuristic methods suitable for problems with
large numbers of nodes.

Figure 1. Example cost surface and optimum path.

Shortest-path algorithms

Dreyfus (1969) has reviewed methods for finding the shortest path between two given
nodes and identifies the algorithm due to Dijkstra (1959) and Whiting and Hillier (1960)
" as the most efficient. The basic steps are as follows:

Step 1. Label the origin node ‘reached’ and set its minimum path cost to zero.

Label all other nodes ‘unreached’.
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Step 2. Examine all links which directly connect ‘reached’ nodes to ‘unreached’
nodes.” In each case add the link cost to the minimum-path cost at the ‘reached’ node
to obtain a temporary minimum-path cost at the ‘unreached’ node.

Step 3. Find the minimum such temporary path cost in the lattice, label the
corresponding node ‘reached’, and make the path cost permanent.

Step 4. 1f the new ‘reached’ node is not the destination, return to step 2. The '
‘reached’ nodes and their optimum paths form a tree which builds outwards from the
origin in obvious analogy to the Huygens construction or the spreading of light.

Two potential economies occur in the case of a lattice. First, since the links -occur
systematically, they need not be identified explicitly. Costs can be determined for
nodes, and ascribed to links as the average of the respective node costs, or in some
other systematic fashion. Second, it is likely that ties will occur between temporary
path costs. In such cases step 3 can be executed repeatedly without returning to step 2.
With these modifications, the algorithm is as follows:

Step 1. Label the origin node ‘reached’ with path cost zero. Label all other nodes
‘unreached’. :

Step 2. Build an ‘open node’ table of all ‘unreached’ nodes directly connected to
‘reached’ nodes, and compute temporary path costs to them.

Step 3. 'Examine the ‘open node’ table for all nodes which tie for minimum temporary
path cost.

Step 4. Label the tied nodes ‘reached’ and delete them from the ° open node’ table.
Step 5. Add to the ‘open node’ table any ‘unreached’ nodes directly connected to
the newly deleted nodes, with temporary path costs.

Step 6. If the destination is ‘unreached’ return to step 3.

Two independent values must be stored for each node. The first is the node cost:
once the node has been ‘reached’ this can be replaced by the minimum path cost to
the node. The second is the ‘reached’/‘unreached’ label: the ‘reached’ state must be
qualified by the direction of the last move, to allow the optimum path to the
destination to be recovered at the end. )

Table 1 shows some typical execution times for a CDC Cyber 73 system, with the
use of a square array of nodes, and origin and destination at diagonally opposite
corners. Times are directly proportional to the number of nodes, at 625 us per node,
for the rook’s case of vertical and horizontal moves, and propornonal to n™ for the
queen’s case, which includes diagonal moves.

Table 1. Typical execution times (in seconds) for a CDC Cyber 73 system, for a square array of
nodes and the origin and destination of diagonally opposite corners.

Nodes Rook’s case Queen’s case
400 0-25 1-05
900 0-59 3:51
2500 1-70 16-34
4900 ° 3-26 4991
10000 6-52 125-89

Characteristics of lattice paths

Each lattice node can be conveniently represented as a two-element vector x whose
elements take integer values. The ith node on a path through the lattice is written as
x;, and the next incremental move as m;, such that

Xip = x,-+m,- .




730

In the rook’s case m can take values of (1. 0) or (0. £1). The queen’s case adds the
moves (£1, £1), and the knight’s case (2, 1) and (1], £2).

Let the cost at node x be Z(x). Then the minimum-cost path problem can be written:

Given an origin node x,. a destination x,. and a set of costs Z(x). find k and a set
of nodes x, ... xp~; to minimise

k-1

'Zl(mf Va4 ZGe) +Z06 )]

fip=
subject to X;4, = x; +my; i = 1, k=1, and each m; is one of the permitted set of
moves. (m; * m;)" is the length of the ith link in the path. It is operationally more
convenient if the path cost is taken as a sum of node costs rather than link costs. or

k
S Z(x)my; - mp)t
i=1 ]

The relationship between a lattice path and the‘equivalent' path on a continuous
surface depends on the move set from which each m; is selected. Consider a section
of path of unit length in a direction ¢ on a flat, continuous surface of constant z,
and suppose that the s permitted move directions in the lattice form an ordered set
of directions 8 ... ;. In order to connect the same origin and destination a lattice
path will make moves in at most two directions, 6; and 6;,,, such that §;, < ¢ <§,,,.
By way of proof. consider a segment in some direction-8,, and suppose that some 9;
exists such that ¢ < §; < 6,. Then a segment can be drawn at §; beginning at the
same node as the segment at §,, and this new segment must rejoin the path before
the destination. It follows that the segment at 6, can be replaced by a shorter
segment at 6; and that the first path was not optimal.

It is easy to show that the distance moved in each lattice direction is given by

o = s.in(6,~+l-—¢) : - .sin(qb—B[) ‘
T sin(B. — 8)) 1 sin(By4q — 6;)

The length of the lattice path computed by summing lattice moves is thus longer by a
tactor

sin(8; 4y —¢) +sin(¢— 6)
sin(6;4, — 9;)

e(p) =

This lattice-path elongation is independent of the fineness of the lattice, depending
only on the relationship between ¢ and the move directions.

Furthermore, any permutation of moves in a lattice resuits in a path of the same-
length.  The execution of the requisite number of moves in two permitted directions
8; and 6;,, can thus result in a large number of different paths of equal length. as
1llustrated in figure 2. The greatest deviation from the continuous-space path will occur
when all moves in one direction are executed first, giving a maximum deviation of
sin{f;4, ~¢)sin(¢ —8))

sin(f;+, — 6;) ’

5(g) =

measured perpendicular to the continuous-space path. Both error measures, e and 6,
are maximised when ¢ bisects the angle between §;,, and 6;.

Table 2 shows the maximum values of ¢ and 8 for three sample cases. Four move
directions are permitted in the rook’s case, 0, 7, 7, and 3w. The queen’s cace adds
odd multiples of 7. and the knight’s case, solutions of tan™'(+}) and tan™'(x2).
Figure 3 shows the variation in each measure over one quadrant. For example. it is
possible for a path defined by means of queen’s and knight's moves to give a 2-6%
overestimate of path length and a deviation of 11-8%, however fine the lattice.
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Y

Consider now a general continuous-cost surface, with an exact solution to the
minimum-path problem defined by

min j zds .

path

Writing tan¢ = dy/dx for the instantaneéous path direction, we have
min ~[‘:( 1+ tan2¢)”dx .

. path

But the problem solved by the lattice approach reduces to
min Y z(1+ tan®¢)*e(¢) Ax . , . ‘

equivalent rook’s continuous-space
case optima . optimum

equivalent queen’s
case optima

Figure 2. Relationship between discrete-space and continuous-space optima.

Table 2. Maximum elongation and deviation for simple move sets.

Elongation € Deviation §
Rook’s case 1-4142 0-5000
Queen’s case 1-:0824 0-2071
Queen’s + knight’s case 1-0261 0-1178
A Deviation T Elongation '
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Figure 3. Variation in deviation and elongation with ¢.




732 , M F Goodchild

where Ax is the horizontal projection of each increment. [t is clear that lattice paths
do not converge to the corresponding continuous-space paths as Ax tends to zero.
Figure 4 illustrates lack of convergence for three lattice cases. It is possible to
solve the continuous-space problem analytically in the case when z is a linear function
of x alone, and the result is shown as the ‘exact’ solution. The development of the
solution is as follows: :
Consider a path in a direction ¢ in an area with cost per unit length z— Az, and
let this path cross into an area of cost z, in which its direction is ¢+ A¢. Assume
that the boundary between the areas is parallel to the y axis, so that z varies with x
alone. Then by analogy to Snell’s law of optical refraction (see for example Jenkins
and White, 1957, page 5; Wardrop, 1969; Angel and. Hyman, 1976, page 12) we have

sin(¢+A¢) z—Az )
sing oz

and in the limit as Az tends to zero,

@_—tancp
&z~ 2z

" Writing tan¢ = dy/dx and z = a+mx we have the solution

v ___k

dz ~ mz?-kH" ,
where £ is a constant of integration (compare for example Angel and Hyman, 1976,
page 22). ‘

Integration gives the solution

k k
y = nfz+(? —k)%l+c,  or y = _lnfatmx+[(atmx)? —k]*}H+e.

Both & and ¢ can be determined by substituting the known origin and destination
points. In particular an origin at (0, 0) and destination at (x4, yo) give
_ k_atmxot (@t mxo)? —k*]%
Yo = m n a+(a2_.k2)% s

which can be solved numerically for k.

i
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Figure 4. Optima on a simple nonuniform cost surface.
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Two kinds of error, elongation and deviation. were identified for lattice paths on
flat cost surfaces. On general surfaces the presence of varying degrees of elongation
leads to a lack of convergence between lattice- and continuous-surface solutions. But
the ties between the costs of different paths, which led to possible deviation error on
flat surfaces, tend to be resolved on general surtaces, so that this problem is only '
encountered when the cost surface shows substantial plateaux. For example, the
lattice solutions in figure 4 are unique optima, in contrast to.those in figure 2.

Refraction at discontinuities: ,
Many geographic variables are best represented choroplethically, by attaching values
to areas outlined by boundaries. The resulting surface appears as a series of plateaux.
with sharp discontinuities between them. As before. we identify the height of the
surface as a generalised cost per unit length of construction. and consider the location
of paths of minimum cost. o

Let z; be the cost in the ith homogeneous area, and ¥, the angle between the
optimum path and a normal to the boundary at the point where the path crosses to
area {+1. Then by analogy to Snell’s law,

siny; 4, _

siny; Zivr .

Now let continuous 'space-be replaced by a lattice with permitt.ed move directions
8, ... 8, measured from a line drawn perpendicular to the discontinuity. Let the
length of path in area A in direction 6; be 4;, in area B in direction ¢, be b,. Then
we have the constraints

IZ&,- cosb; = D, ., ;bk cosg, = D, . IZa,- sin0i+;bk sing, = Dy .-

where D, and D, are the perpendicular distances of origin and destination from the
discontinuity, and Dj is the distance between origin and destination parallel to it. We
wish to minimise

Z = .'.’AIZ(Z/'+ZB;bk .

Applying Lagrange multipliers A4. Ag, and u to the three constraints, respectively. and
- differentiating with respect to the a; and b, gives the conditions

2ot A4 cosf tusing, = 0, j=1, 2.,
zgt+Agcosg, +using, = 0. k=12 ...

Since there are only three unknowns, there can be no more than three nonzero as
or bs. So in one area the path follows a permitted direction, and in the other it is a
combination of two. ‘

Figure 5 shows an example of the refraction of a route according to a continuous-
space solution, obeying Snell’s law, and three lattice paths with different permitted
move directions. In each of the lattice cases the path follows one permitted direction
in the high-cost medium. No two solutions cross the discontinuity at the same point.

Extension of Snell’s law to more than two regions is straightforward, since the law
can be applied wherever a path crosses a boundary (Werner, 1968). Several further
points are of interest, however. The first arises when a path must reach a destination
behind a high-cost region. There is no refracted path to the destinations in figure 6(a);
rather. the optimum path runs around the end of the high-cost region and requires a
bend, in the absence of a corresponding discontinuity, by analogy to the process of
optical diffraction. Diffraction also occurs at.sharp changes in boundary direction
[figure 6(b)]. It is interesting that particle- and wave-related phenomena are both
involved in the analogy between optics and path location.
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From Snell’s law the angle of incidence in the first region, ,, may not exceed
sin"'(z,/z,). Optically, such paths will be reflected at the discontinuity. In the
location problem such paths cannot be optlmum routes to any point in the second
region.

A process analogous to optical scattering occurs at any highly convoluted boundary,
such as a meandering river bank. The rapid changes in boundary direction create
even more rapid-changes in path direction beyond- the boundary.

Choroplethic maps are one case where it is possible to find exact solutlons in
continuous space, without resorting to some form of numerical integration. By
searching all directions from a given origin and solving Snell’s law at each boundary,
it is possible to find a path passing through a given destination. However; in a
complex system there may be more than ene path between origin and destination,
including both refractive and diffractive processes.. Points of diffraction create major v

high cost
z=135)

-~ low cost
: z=1
origin

queen’s
. case

X

A
rook’s\ - S
case A queen s
N+ knight’s

Figure 5. Refraction at a cost discontinuity.

diffracted
paths
origin high-cost
zone
(@)
origi diffracted
gin paths
(b)

Figure 6. Route diffraction: (a) at an edge; (b) at a vertex.
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probléms since each one expands the number of possible paths. And although each
path which intersects the destination is locally optimum. and valid optically, the set -
of such paths must be searched to find the globally optimum least-cost path.

Approaches for large problems o )
The capacity of most computing systems is reached by problems of the order of 105

.nodes, which is a severe limitation in the application of the technique to realistic

problems. Larger problems can be handled, but incur a disproportionate increase in
computing costs. In this section I shall consider methods for reducing the number of '
nodes to within computing-system limits. The result is an approximate, or heuristic,
solution. . _ o

The first and simplest method is by truncation of the study area. In any application”
there must be some definition of the area over which costs are to be evaluated.
Although in general it is possible for the optimum path to extend outside the study
area, it is implicitly assumed that this will not happen, and the study area is defined
as that region within which the optimum path probably lies. By defining the area as
narrowly as possible, one can reduce the number of nodes in the problem or achieve
greater spatial precision for a given number of nodes. But there would be no indication
even after solution of the problem if the true optimum path lay outside the study area-
for part of its length. No heuristic solution can ever indicate its own suboptimality.

The second and third approaches involve aggregation of nodes, or equivalently a
reduction in sampling intensity. The density of the original lattice is likely. to be
influenced by a number of factors.  First, it may be related to the width of the planned
corridor, since narrow corridors clearly require a greater spatial precision. Second, the
spatial variability of cost is important. If cost is highly regionalised (Matheron, 1965),
showing little local variation, the sampling intensity can be correspondingly light.
Aggregation produces the most acceptable results when these two influences conflict,
when the spatial precision required for corridor location is higher than that needed for
adequate sampling. Cells can be aggregated in a constant spatial pattern, or by taking
account of local cost variation. In the former case each level of aggregation is itself a
lattice, but-in the latter, aggregate cells are made much larger in areas of constant cost.

Newkirk (1976) has explored the latter approach. All neighbouring nodes of
constant cost are replaced by a single node, and the optimum path is then found for
a smaller, irregular network. Two disadvantages should be noted. First, the change
to an irregular network incurs a penalty in computing costs.- Second, the spatial
precision of the solution is that of the aggregated network, and is much lower in
areas of constant cost. Newkirk has developed methods for adjusting and smoothing
the final solution to reduce this problem. _

A spatially constant aggregation by a factor A is defined as the replacement of each
square of A by A4 nodes in the original maximum-precision latticé by a single node
with a value equal to the sum of the nodes in the square; p rows and g columns are
thus reduced to p/A and /A respectively. If the cost surface is sufficiently
regionalised, showing little systematic variation within each aggregate cell, then
optimum paths in the two lattices will be very similar.

In the first step of the procedure, nodes are aggregated by a factor 4, and a path
is found between a specified origin and a specified destination. The nodes on the
path, together with those within a certain number of nodes d of the path, are then
partially disaggregated to a new level A, and the problem is solved again. The
procedure is repeated through #n steps, with a final complete disaggregation 4, = 1.
The final solution is thus at .the maximum spatial precision. It will in general diverge
from the result of an exact one-step solution, depending on the scale of regionalisation
of the cost surface.
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The first step is in pg/A?% nodes. of which roughly (p+q)/A4, occur in the solution.
In the second step. in which the inclusion of d extra nodes on either side of the first
optimum is allowed for, the number of nodes after partial disaggregation is
2d[(p+q)/A,1(A,/A5)% In general. at step k > | there are 2d(p+ q)(Ax_,/A})
nodes in the problem and (p+¢)/A, in the solution.

From the computational point of view, the aggregation factors should be arranged
to minimise the number of steps, by making the number of nodes equal to the system
capacity NV at each’step:

pq _ dp+q)Ac—,

A2 = Az = fV.
Thus
. Y 9 [ NC
_ (Pa\* _ [Hd+a (@ .
A = <N) b -~ { N :' N) ’
I -1 N)
A, =14 n =l n(pq/N)

In2 "n(2d(p+q)/N] "

These relationships only provide rough guidelines for the choice of the 4, however,
since in reality each p/4; and q/A, must be an integer.

The method was developed for a'study of a proposed power transmission corridor
between Nanticoke and London, Ontario (Potts, 1975; Newkirk and Troughton, 1974).

Summary and conclusions

The problem of optimal horizontal alignment for a transportation or communication
corridor has frequently been studied as one of finding the least-cost route through a
weighted lattice. This approach has several advantages. [t places no restrictions on
the distribution of cost over the study area, introduces an explicit level of spatial
resolution to the study. and makes the problem finite and tractable. However, the
lattice approach implies two forms of approximation. The precision of the solution
depends on the fineness of the lattice, and on the set of move directions permitted.
The ideal solution is only found when both tend to infinity. Solutions found with a
finite move set do not tend asymptotically to the ideal solution as the fineness of the
lattice increases. Furthermore, it is impossible to examine the effects of increasing
the move set beyond a few simple cases without at the same time considering longer
and longer moves which reduce the spatial precision of the lattice.

Two indices, deviation and elongation, were introduced in order to measure the
degree of divergence between lattice and exact solutions. Divergence occurs in two
ways. First, lattice solutions tend to be nonunique, especially when areas of constant
cost are present in the study area. This effect can be lessened by making 2 random,
rather than a systematic, resolution of ties in the solution algorithm. Second, the
objective function minimised in the lattice solution contains an implicit set of weights
related to the move set. The divergence which results can only be reduced by
enlarging the set of permitted moves.

A useful analogy exists between the selection of optlmum paths and the properties
of light. especially for cost surfaces which consist of homogeneous areas separated by
sharp discontinuities. However, the refractive analogy proposed by Werner (1968) as
a solution method is only viable for special cases. In general, diffractive as well as

. refractive processes are present. Diffraction creates difficulties, as it requires an
expansion of the set of paths to be searched, and is overly sensitive to the spatial
precision of the cost surface. Furthermore, solutions to the optical problem are not
necessarily unique.
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The success of any lattice method is difficult to assess, since the continuous-space
ideal is usually hypothetical. The indices evaluated in this study for constant-cost
surfaces place crude upper limits on lattice-path error, depending on the set of
. permitted moves. The difference between lattice solutions to the same problem for
different move sets also gives some indication of likely error. Consider, for example,
the index :

_ Zroo K's uneen’s + Kknight’s
uneen ’s

~ The value of y will be zero if and only if no improvement in cost occurs between the
smallest and the largest simple-move sets, a strong indication that the lattice solutions
are very similar to a continuous-space solution.

In general, the divergence of the rook’s case is such that it should never be accepted
as a solution. Since solution costs usually increase by an order of magnitude from
one move set to the next, a useful practical strategy is to proceed in a stepwise
fashion, terminating when a further expansion of the move set produces little
improvement in path cost, or when the marginal benefit from better approximation
to the ideal solution is outweighed by the marginal cost of solving the problem with a
larger move set. Fineness of the lattice, on the other hand, is usually controlled more
by the spatial resolution of available data, or by the proposed corridor width. _

The lattice approach to the corridor location problem raises many of the questions
which are inherent in any heuristic method. It is difficult to obtain an accurate
measure of the degree of suboptimality of the solution without solving the infinite-
move-set/infinitely-fine-lattice problem, particularly since in this case the fineness of
the lattice is probably limited by the resolution of the data. Greater precision can
only be achieved at greater cost, either in data collection or in computer time, so that
a researcher can only hope to produce the best possible solution, given externally
imposed constraints.
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