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Abstract. In this paper we propose a simple technique for assessing the positional
accuracy of digitized linear features. The approach relies on a comparison with
a representation of higher accuracy, and estimates the percentage of the total
length of the low accuracy representation that is within a specified distance of
the high accuracy representation. The approach deals successfully with three
deficiencies of other methods: it is statistically based: is relatively insensitive to
extreme outliers; and does not require matching of points between representations.
[t can be implemented using standard functions and a standard scripting language
in any raster or vector GIS. We present the results of a test using data {rom the
Digital Chart of the World.

1. Introduction

The positional accuracy of a spatial object, or a digital representation of a feature,
can be defined through measures of the difference between the apparent location of
the feature as recorded in the database, and the true location. Unfortunately, abund-
ant difficulties exist in identifying the true location of a feature because of problems
with measuring instruments, frames of geodetic reference, and feature definitions.
Instead, positional accuracy of a feature’s digital representation in a database may
need to be defined in practice through measures of the difference between the location
recorded in the database, and a location determined with higher accuracy. We term
the first representation the tested source and the second representation the reference
source. If the accuracy of the reference source is sufficiently high, one can ignore the
(unmeasured) difference between it and the truth, and treat the measure of accuracy
as a property of the tested source only.

In the case of point features, the distance between the tested and reference source
provides a convenient basis for measures of accuracy. Suitable measures include the
root mean square distance, and percentiles of the distance distribution. The 90th
and 95th percentiles are often used as the basis of map accuracy standards and as
measures of accuracy for measurement instruments such as the Global Positioning
System (GPS), and are readily interpreted without substantial understanding of
statistics. If the distribution of observed positions around the true position is normal
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or Gaussian, simple mathematical relationships exist between the percentiles of the
distance distribution and other parameters such as the root mean square distance
and the standard error.

When features are lines, areas, or volumes the comparison of tested and reference
sources presents substantial problems. The epsilon band (Perkal 1966) has been
discussed frequently in the literature (Blakemore 1984, Aspinall and Pearson 1995),
and is implemented in various GIS algorithms in the form of a tolerance. Epsilon is
often interpreted in a deterministic sense as the minimum buffer width around the
reference object that contains all of the tested object, or vice versa. However, this
definition is very sensitive to outliers. Since outliers are likely to be rare, we can
expect epsilon to rise as the sampled length of the feature rises, and thus to be
dependent on decisions that may have little to do with the process of data production.
For example, epsilon estimated in this way for the coastline of the entire U.S. is
likely to be larger than epsilon estimated for any sample part of the U.S. coastline,
even though the coastline may have been produced using a uniform method. This
dependence of the metric on outliers and sample size makes it less than ideally
robust, and less than ideal as a quality control measure.

Another possible approach is to compare representations through a series of
point comparisons. If points on the tested source can be matched to points on the
reference source, then measurement of accuracy reduces to the well-defined point
case. But while certain types of features such as rectilinear road networks may
contain sufficiently well-defined points, such as intersections, the approach is much
more difficult to carry out with other types of features such as coastlines, especially
since comparisons must be made across large differences in scale, and therefore in
feature generalization. Moreover, it is possible that the processes of data production
lead to different distributions of error for well-defined features, in which case such
measures may be biased. For example, road intersection locations may have been
obtained from a more accurate source than the links between them, or may have
been subject to different processes of generalization. If matching is possible and there
is no reason to expect bias, then statistical parameters of the resulting distance
distribution will provide robust metrics of accuracy.

Where no matching of points is possible, it is necessary to resort to some other
metric of the separation between the tested and reference sources. One might sample
points along the tested source and in each case measure the distance to the closest
point on the reference source. Similarly one might sample along the reference source
and measure to the closest point on the tested source. Both of these approaches give
a sample of distances from which distributions can be obtained, and statistics
measured such as the mean or the percentiles. One can also combine the two
approaches to obtain a single average. But these methods are all subject to the same
basic objection—we do not know how the shortest distance is related to the distortion
of individual points, which can be measured only if points can be matched. Certainly
the true distortion is always at least as large as the shortest distance.

The method we propose requires that a reference source be available, and that
it contain a complete representation of the feature. Skidmore and Turner (1992)
Jdiscuss a somewhat different situation, common in forestry, where reference informa-
tion is available only in the field, and where the cost of field observation is high. In
such cases it is feasible to collect only a sample of the reference source, in their case
using field transects; the separation between the tested location of the feature and
the reference location is determined at each intersection between a transect and the
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tested source. The number of transects determines the confidence one has in the
estimate of separation—the more transects, the greater the confidence.

The objectives of Skidmore and Turner (1992} are different from ours in a second
respect. The mapping of forest boundaries is normally subject to some positional
uncertainty imposed by the mapping technology, for example, one might know that
a positional uncertainty of 10 m was introduced by the act of digitizing from a paper
map. In addition, mapped forest boundaries will vary from their true positions in
the field because of observer error, and this effect will frequently be greater than
10 m. It is desirable to know what proportion of mapped boundaries are within the
limits of uncertainty imposed by the technology, and what proportion contain
additional uncertainty. Skidmore and Turner assume that the ficst form of uncertainty
is known, and focus on measuring the second. We see our proposed method as
directed at the more fundamental problem of measuring positional uncertainty in
the most general circumstance where nothing is known.

The assumptions of standard error theory lead to the expectation that the
distribution of differences between observed measurements and their true values
should be Gaussian. Although this principle may extend to points, and is assumed
in many approaches to the measurement of positional uncertainty in points, no
comparable theory exists for the case of measures of separation between complex
geographical features. The method we propose is non-parametric, which seems
appropriate until adequate theory is developed, or perhaps until extensive empirical
results demonstrate that the Gaussian distribution is endemic in these circumstances,
although this seems unlikely.

2. Method

Figure 1 shows an example of a reference source (the ‘true’ coastline) and a tested
source. Consider a buffer of width x around the reference source object. We compute
the proportion p of the tested source length that lies within the buffer. The function
p(x) is expected to be robust, in the sense that it is relatively insensitive to outliers

Coastline to
be tested

“@——— 'True' coastline

A Buffer zone

\ of width x

Figure 1. A buffer of width x around the ‘true’ coastline boundary is intersected with the
boundary to be tested, to determine the percentage of coastline lying within the
buffer polygon.




302 © ” M. F. Goodchild and G. J. Hunter

and rare events, unlikely to depend systematically on the length of feature sampled,
and invariant under rotation, translation, and rescaling of the coordinate system. If
we think of p(x) as a cumulative probability distribution, with p(0)=0 and p(0)=
L, then values of v can be thought of as corresponding to percentiles of the distribu-
tion. For example, we could identify the 95th percentile as the distance within which
95 per cent of the length of the tested source lies. This should be readily interpretable.

The measure depends on measurement of the length of the tested object. In vector
representations, length is a function of the digitizing process, and this might be raised
as an objection as it makes the measure sensitive to factors other than positional
accuracy. But since both the numerator and denominator of p depend on this same
factor, we expect their effects to tend to cancel out. Similarly, in raster systems where
length is measured by counting cells, both numerator and denominator will be
approximately equally sensitive to cell size. Thus, more careful digitizing of the same
test source, or change of cell size, should not affect the measure directly.

By analogy to accepted measures of positional accuracy for points, we expect
that most applications will require the determination of x for a given value of p. Let
y represent the given value, perhaps 90 or 95 per cent. Then we require a procedure
for determining x such that p(x) = y. If we could assume a model for p, such as the
Gaussian distribution, then we could use its inverse function to determine x. However,
it seems unnecessary to make this assumption when a simple iterative procedure will
suffice. We propose the following procedure:

L. Set x,=0 and p,=0, and determine the target percentile y. Select an initial
value x;, based on available indicators of positional accuracy such as test
source scale, or map accuracy standards. Set i=1.

2. Construct a buffer of width equal to x; around the reference object; intersect
this buffer with the tested object; and compute the proportion of the tested
object enclosed within the buffer as p,. If |p; — yI<0-001 then stop.

3. Compute a new estimate of x based on a linear approximation to the function
p:

_ (y—pio )i —x;2y)
Xi+1 = + Xy (1)

o (pi—pi-1)
4. Seti=i+1, and go to (2).

Since the function p(x) must be monotonically increasing, there will be exactly one
solution to p(x)=y, 0 <y<l1, and the iterative search should be well-behaved,
although any algorithm to search for a crossing of a function could be used. Step
{2) requires successive estimates to be within 0-1 per cent of each other for the
process to terminate.

3. Case study and discussion of results

To test the method in practice, a segment of coastline from the Digital Chart of
the <<.02m data set was selected (figure 2 (a)). The segment chosen depicts the southern
coastline of Victoria, Australia, around Port Phillip Bay and the city of Melbourne.
The data quality statement accompanying the DCW data (ESRI 1993, pp. 2-10)
notes that *... horizontal accuracy, at a 90 per cent confidence level for circular error,
ranges from 1600 feet (488 m) to 7300 feet (2225 my. For some tiles in the data set,
Uﬂc,\. also contains local positional accuracy statements as supplied by the source
mapping agencies, but these are absent for this coastline segment.
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Figure 2. In (a) the coastline to be tested comes from the Digital Chart of the World, and
represents part of the southern coast of Victoria, Australia. The segment of coastline
extracted for comparison lies between the two short line markers. In (b} the ‘true’
coastline has been digitized from local 1:25000 topographic mapping.

For purposes of comparison, a reference source was created by careful digitizing
of local topographic maps compiled at 1:25000 scale (figure 2(b)). A coordinate
transformation was applied to the DCW data to bring both sources into the same
projection and datum. The endpoints of the reference source were matched to the
DCW, which was then clipped at the positions marked in figure 2 (¢). The reference
source had a total length of 247 km, compared to a test source length of 179 km, the
difference being due largely to the omission of several large rivers and estuaries from
the DCW.

The results are shown in table 1 and figure 3. In both cases we have evaluated
p(x) over a range of discrete values; in practice, we suggest the automated search
described above be used to determine x given y. The 90th percentile is approximately
330 m, which is consistent with the data quality statement quoted earlier, although
the latter was presumably verified by comparison of well-defined points. Table 1 and
figure 3 also show a computed Gaussian distribution for comparison, as estimated
from the 68th percentile (z=1 for a one-tailed Gaussian distribution at a cumulative
probability of 0-6826). The standard deviation is 189-2, and the fit is very close with
the exception of the extreme tail.

The test case clearly illustrates the problems associated with estimating the 100th
percentile noted earlier. For example, an increase to x=1000 leaves 1-9 per cent of
the tested source still outside the buffer, due to the prominent inlet shown in
figure 2 (a) near Melbourne at the top of the data set appearing on the generalized
tested source but not on the detailed reference source. The reason for this omission
is unknown, and indeed it would have been expected to have been shown in greater
detail on the reference source than the tested source. While it is considered by the
authors to be an anomaly in the reference source, it nevertheless exists in practice
and cannot be ignored.

Clearly, the approach described here focuses on information loss due to positional
error, rather than to other cartographic processes. For example, figure 2 illustrates
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Table r Case m:_ﬁ.; qa.mczv. showing the length and percentage of coastline inside the buffer
in terms of its width. The Gaussian distribution is also shown for comparison.

Buffer width _La.zm? of coastline % ol coastline Gaussian
(m) within buffer (km) within bufler distribution
20 172 96
2 84
40 N0 179 167
60 490 274 249
80 625 349 328
100 757 42:3 40-3
125 915 511 49-1
150 1057 590 572
200 1267 70-8 709
250 1454 812 314
300 1568 876 887
350 164-8 92:1 936
400 169-8 949 966
450 1722 962 983
500 1730 966 99-2
550 1733 968 99-6
600 1735 969 99-8
700 1739 971 99-98
800 174-3 97-4
900 ) 1747 97-6
1000 1756 981
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“igure 3. W_o,ﬂ of the percentage of coastline lying within the buffer versus the buffer width
(solid line connecting black circles). For comparison the Gaussian distribution is also
shown (dashed line connecting white circles).

Simple technique for accurate assessment of linear features 305

the effects of cartographic generalization, in the omission of the large river and
estuary features of figure 2(h) from the relatively coarse DCW representation of
figure 2(a). These features do not affect the length of the tested source, nor the
proposed measures of positional accuricy, because their omission is a reflection of
cartographic generalization rather than error. On the other hand, the large inlet
which appears in the coarse figure 2{a) but not in the detailed figure 2 (h), will affect
the proposed measure, as its absence in the detailed representation is more consistent
with the notion of error than generalization, We suggest that a similar approach
based on the percentage of the reference source fength rather than the tested source
might be more related to generalization, although we acknowledge that the two
concepts are not as simple to separate as this comment might suggest.

The approach also lends itself well to various forms of visualization. Figure 4
shows those parts of the DCW feature lying inside buffers of widths 40m (179 per
cent), 100m (42-3 per cent), and 500m (96:9 per cent); displays such as this might
be useful in quality control and in educating spatial data users in the meaning of
map accuracy statements (Paradise and Beard 1994). Indeed, it is suggested that the
written statement and its visual counterpart should be shown together so that the

(a) (b)

{c} {d)

Figure 4. Illustrations of the portions of coastline lying inside the buffer for widths of (a) 40m
(17-9 per cent), (b) 100 m (423 per cent), {c) 200m (70-8 per cent), and (d) 500m (966
per cent). Line breaks depict sections of the coastline lying outside the buffer.
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consequences of the statement may be more clearly understood. For instance, by
being able to visualize what it means to have only 179 per cent of the map feature
lying within 40m of the true position, a decision-maker may well decide that the
dataset is not suitable for the intended application—hence map accuracy statements
can assist users to make decisions about data quality and fitness for use, which is
their ultimate goal.

4. Conclusion

A simple method has been presented for obtaining useful descriptions of positional
accuracy for linear features such as coastlines which are usually of extreme length
and difficult or uneconomical to field check. It is considered that the method can be
applied to other forms of linear features and generalized to area and volume. features,
however this has not been confirmed in practice. The procedure compares a tested
source to a reference source by computing the percentage of the length of the tested
source lying within given distances of the reference source. The approach is robust,
being comparatively insensitive to the nature of the digital representation of the
feature, and is easy to implement in a GIS.
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