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A New Model For Handling Vector Data Uhcertajnty
in Geographic Information Systems

Gary J. Hunter and Michael E. Goodchild

Abstract: Recently, the authors investigated the uncertainty associated with grid-cell data in geographic informa-
tion systems (GIS), through the use of a model which permits a population of distorted (but equally probable) ver-
sions of the same map to be generated and analyzed. While this model is easily applied to data such as digital eleva-
tion models to help assess the uncertainty associated with the products derived from them, it was not directly
applicable to vector data. However, the model has now been enhanced to allow for distortion of vector data through
the creation of separate horizontal positional error fields in the x and y directions, which are then overlaid with the
vector data to apply coordinate shifts by which new versions are created. By perturbing the data to generate dis-
torted versions of it, the likely uncertainty of vector data in both position and attribute may be assessed in certain
types of GIS outputs. This paper explains the background to the model and discusses its implementation and po-

tential applications.

being widely implemented in the public sector

for applications such as facilities management,
land administration, resource monitoring and assess-
ment, and emergency service command and control,
whereas the private sector employs them for demo-
graphic analysis, marketing and retail site selection. In
April 1994, President Bill Clinton issued an executive
order establishing the U.S. National Spatial Data Infra-
structure in recognition of the economic, environmental

' Geographic Information Systems (GIS) are now
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and social importance of providing low-cost, accurate,
and easily obtainable spatial data to all sectors of the
community. Other countries, such as Australia and
New Zealand, have followed the progress with keen in-
terest and are considering adopting similar programs.
While the issues of cost and easy access to data have
been generally overcome through government policies
and technological advances, the accuracy issue is still
causing considerable problems within the industry.
From a historical viewpoint, as users became more
experienced with GIS during the 1970s and 1980s, there
gradually arose a critical awareness of the fact that of-
ten they did not know how accurate their system out-
puts were, and whether or not the derived information
actually satisfied their accuracy requirements. This
predicament has been caused not only by the false
sense of security that computer technology can induce
in the unwary, but also by the lack of theoretical models
of spatial data error and the means to communicate it.
The situation has now reached the point where, for
government agencies which base their regulatory deci-
sions upon spatial information or in cases where they
or private companies sell data for commercial return,
there is the growing risk of litigation by aggrieved par-
ties seeking compensation for poor decisions based on
data inaccuracies or data that had insufficient accuracy
to meet their requirements. Software developers and
vendors may also be affected since the algorithms they
encode in their products can have the potential to in-
duce additional error. Thus, the accuracy issue should
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be of serious concern to all sectors of the geographic in-
formation industry.

In recent years, most international spatial data trans-
fer standards have adopted mandatory data-quality re-
porting provisions (Moellering 1991), which will no
doubt help address the problem by ensuring that data
providers truthfully label their products in such a way
that users can assess their fitness for use. However,
while this approach has its merits, there is a presump-
tion that the necessary tools for modeling and commu-
nicating spatial data error already exist. Unfortunately,
this is not the case and a considerable amount of re-
search still remains to be conducted. Goodchild (1993),
for instance, suggests there are only half a dozen com-
monly accepted models of spatial data error. And
Hunter and Beard (1992) have identified at least 150 po-
tential error sources of which we have little or no cur-
rent understanding.

To help deal with this problem, the authors have de-
veloped a model of uncertainty for dealing with spatial
data; however before discussing it, some explanatory re-
marks are required regarding the use of the term ‘uncer-
tainty.” In the context of geographic data, it is argued
that there is a clear distinction between ‘error’ and “un-
certainty,” since the former implies that some dégreeof ~
knowledge has been attained about differences (and the
reasons for their occurrence) between the results or ob-
servations and the truth to which they pertain. On the
other hand, ‘uncertainty’ conveys the fact that it is the
lack of such knowledge which is responsible for hesi-
tancy in accepting those same results or observations
without caution, and often the term ‘error’ is used when
it would be more appropriate to use ‘uncertainty.’

The uncertainty model that has evolved can be de-
fined as a stochastic process capable of generating a
population of distorted versions of the same reality
(such as a map), with each version being a sample from
the same population. The traditional Gaussian model
(where the mean of the population estimates the true
value and the standard deviation is a measure of varia-
tion in the observations) is one attempt at describing er-
ror, but it is global in nature and says nothing about lo-
cal variations or the processes by which error may have
accumulated.

The model adopted in this research is viewed as an
advance on the Gaussian model since it not only has the
ability to show local variation in uncertainty, but also
has the advantage of being able to display the effects of
error propagation resulting from the various algorithms
and process models that have been applied—even
though we do not possess propagation models per se.
This latter point is particularly important to users, since
many software vendors do not divulge the algorithms
used in their packages for commercial reasons—which
prevents formal mathematical error propagation analy-
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sis from being undertaken. By studying different ver-
sions of the products created by the model, it is possible
to see how differences in output are affected by varia-
tions in input.

The model was originally designed by Goodchild et
al. (1992), and its use in assessing the uncertainty of
products derived from grid cell data has been reported
in Hunter and Goodchild (1994) and Hunter et al. (1994).
However, a limitation of that initial version of the model
was its inability to represent uncertainty in vector data,
and this paper describes an enhanced version of the
model which is capable of producing distorted versions
of point, line and polygon data. This paper is structured
such that the concepts underlying the model are first in-
troduced, followed by the issues affecting its implemen-
tation, and then finishes with a discussion of how it
might be applied in practice.

Overview of Model

Extending the original grid cell uncertainty model to
cater to vector data involves the creation of two sepa-
rate, normally distributed, random error grids in the x
and y coordinate directions. When combined, these
grids provide the two components of a set of positional
error vectors regularly distributed throughout the re-
gion of the data set to be perturbed. The assumptions
made by the authors are:'1) that the error has a circular
normal distribution, and 2) that its x and y components
are independent of each other. The grids are generated
with a mean and standard deviation equal to the pro-
ducer’s estimate for positional error in the data set to be
perturbed (which is a fundamental prerequisite for the
model to be applied). These error estimates, for exam-
ple, might come from the residuals at control points re-
ported during digitizer setup, or from existing data
quality statements such as those that now accompany
many spatial data sets.

By overlaying the two grids with the data set to be
distorted (containing either point, line or polygon fea-
tures), x and y positional shifts can be applied to the co-
ordinates of each node and vertex in the data set to cre-
ate a new, but equally probable, version of it (see Figure
1). Thus, the probabilistic coordinates of a point are con-
sidered to be (x + error, y + error). With the new dis-
torted version of the data, the user then applies the
same set of procedures as required previously to create
the final product, and by using a number of these dis-
torted data sets the uncertainty residing in the end
product is capable of being assessed. Alternatively, sev-
eral different data sets may be independently distorted
(each on the basis of its own error estimate) prior to be-
ing combined to assess final output uncertainty. While
the new model does require an initial error estimate for
creation of the two grids, it is the resultant uncertainty




FIGURE1. The proposed model of vector data uncertainty uses normally distributed, random error grids in the xand y
directions to produce a distorted version of the original point, line or polygon data.
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arising from the use of perturbed data due to simulation

(in conjunction with the spatial operations that are sub-

sequently applied) which is under mveshgahon, and
hence its label as an ‘uncertainty’” model.

Implementation Issues

Generation of the Error Grids

The two error grids are created independently by popu-
lating them with normally distributed values having a
mean and standard deviation equivalent to the pro-
ducer’s horizontal error estimate for the data set being

_ perturbed. Usually, the mean will equal zero and the
standard deviation is the same in the x and y directions.
In some GIS packages, provision already exists for creat-
ing grids that are normally distributed (such as the
NORMAL function in the Arc Grid software). The two
grids, which are initially assigned zero as their coordi-
nate origin and have unit separation distance between
points, are then georeferenced via a 2-dimensional coor-
dinate transformation to achieve the required separation
distance and to ensure they completely overlap the data
set to be perturbed (for example, by using the SHIFT
function in Arc Grid which employs the new lower left
coordinates of the grid and required point spacing as its

arguments).

Choice of Error Grid Separation Distance

While the choice of separation distance between points
in the error grids is arbitrary, if it is larger than either the
x or y components of the minimum distance between
any two neighboring features in the data set to be dis-
torted (regardless of whether they are represented by
points, lines or polygons), then local positional shifts ap-

plied to those points will be equal and no longer inde-
pendent—causing unwanted local spatial autocorrela-
tion to be introduced to the data (see Figure 2). Thus, the
point spacing in the error grids should be at least as
small as the minimum x or y distance between observed
features in the data set, although spurious data should
obviously be discounted from this estimate.

As a rule of thumb, it is suggested that the spacing be
equal to or less than 0.5 mm at the scale of the map from
which the data originated, which is a common estimate
of relative positional accuracy. This translates into 0.5m
at a scale of 1:1,000; 5m at 1:10,000; and 50m at 1:100,000.
Where little is known about the data set’s origin, users
should select a separation distance smaller than they
would care to consider—given the nature of the data
and the application concerned. For example, with a veg-
etation boundary data set it might be considered that in-
dividual boundary segments or polygon widths less
than 20m, while not necessarily spurious, will not prac-
tically affect the outcome of any analysis to be con-
ducted. Thus, selection of an error grid separation of
20m is reasonable even though the positional shifts ap-
plied to features that are less than this distance apart
will be similar in magnitude, and therefore highly corre-
lated. Alternatively, a user may decide to set the grid
separation distance equal to the standard deviation of
the horizontal positional error.

Preserving Topological Integrity

Between Distorted Features

To preserve topological integrity between features upon
distortion, some means of adjustment must be intro-

duced to control the magnitude of positional shifts be-
tween neighboring points in the error grids. If this does
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FIGURE2. When choosing the error grid separation dis-
tance, if the spacing (d) between points in the
. error grids is greater than the separation or
size of the smallest features, then unwanted
local spatial autocorrelation between shifts at
neighboring points may result.
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not happen, there is a likelihood that neighboring points
in the original data set may be transposed in position—
causing unwanted “fractures” in the feature structure
(see figure 3a). This could also happen with neighboring
contour lines, or with points on either side of a long,
narrow polygon—causing contours to overlap and a
“figure 8" transposition to occur with new polygons be-
ing formed. Intuitively, these alterations to feature struc-
ture should not happen and are considered unaccept-
able. Originally, the authors considered using spatial

autocorrelation to constrain the shifts in the x and y er-
ror grids, but this would have had the effect of unneces-

- sarily altering all shifts in the two grids when in all

probability only a relatively small number of “fractures”
actually needed to be adjusted. Accordingly, a localized
filter was seen as the preferable solution.

Therefore, a routine was developed to test the differ-
ence between consecutive pairs of points (in horizontal
or row sequence for the x grid, and vertical or column
sequence for the y grid) to determine whether the ab-
solute value of the difference between them was greater
than the chosen grid separation distance (Figure 3b). If
so, then a “fracture” is possible at that location (if two
data points are nearby) and a filter must be applied to
average out the shift values on the basis of neighboring
grid points. This testing between neighbors in the x and
y grids is iterative and proceeds until no “fractures” ex-
ist in either error grid.

For example, given consecutive shifts Axg, Axj, Axp
and Ax; in any row of the x error grid (and testing the
difference between the two middle shifts), then there is
potential for a “fracture” to occur if Ax; ~Axy > d

‘(where d is the grid separation distance). The adjusted

values of Axj and-Axy are-computed by equation (1): -

Ax|= Aico + Ax; + Ax,
3
A Ax, +A ®
and Ax} = 1 * 32 Tox

FIGURE3. In (a), unconstrained shifts between neighboring error grid points may cause unacceptable “fractures” or
transposition of features—thereby damaging the topological integrity of the data set. In (b), “fractures” oc-
cur when the difference between neighboring error grid points is larger than their separation distance (d).
In (c), a “fracture” is circled in which case the x and y shift values must be filtered on the basis of neighbor-

ing grid point values.
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The justification for the filtering process is that although
the shifts are intended to be normally distributed, it
should be remembered that the choice of the normal
distribution is only an assumption and we must accept
that there may be some faults in its selection as a theo-
retical model. For example, when statisticians analyze
human intelligent quotient (IQ) data using a normal dis-
tribution with a mean of 100 and standard deviation of
20, the distribution is deliberately truncated at zero to
disallow values less than zero that intuitively should
not occur—even though they will be predicted by the
model. Similarly, the filtering of neighboring error shift
values to avoid ‘fractures’ is simply a truncation of the
distribution to cater for a minority of extreme cases.

Calculation of Positional Shifts for
Data Points not Coinciding with the Grids

Inevitably, it is expected that few if any nodes or vertices
in the observed data set will coincide with the error grid
points, and a technique is required for calculating x and
y shifts based on the values of neighbors in the error
grid. Accordingly, a simple bilinear interpolation proce-
~ dure (Watson 1992) is proposed in which the x and y
shifts assigned to each data point are calculated on the
basis of the respective shifts of the four surrounding
grid points (Figure 4).

Transfer of Positional Shifts to the Data Points

The final implementation issue concerns the means by
which the positional shifts are transferred to the data
points. At this stage, the likely solution is to take each
point in the data set to be distorted and label its position
as the “From” coordinates, to which the x and y shifts
are added to give the “To” coordinates. Where topology

FIGURE4. Thexand y shifts for a data point not coin-
ciding with an error grid intersection point
are calculated based on the four surrounding
grid values using bilinear interpolation.
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is present, it will need to be reconstructed after distor-
tion. At this time, the transfer procedure has not been
implemented and testing will be required to develop ef-
ficient computational algorithms. Clearly, the need may
arise for high-performance computers to be employed,
particularly where many thousands of nodes and ver-
tices are to be perturbed, and current research into GIS
and supercomputers (such as described in Armstong,
1994) is being investigated by the authors.

Summary of the Model’s Operation

The following steps summarize the considerations that
have been discussed with respect to implementing the
model in practice:

Step1: Determine the separation distance required for the
error grids and the coordinate extent that the grids
will need to cover.

Generate two error grids populated with indepen-
dent, normally distributed values.

Adjust the dimensions of the grids to give the re-
quired spacing between points and transform their
coordinate origins to agree with the data set being
perturbed.

Test the grids for “fractures” and filter error shift
values as necessary. Repeat until no “fractures” ex-
ist.

Taking each point in the observed data set in turn,
calculate the positional shifts in x and y to be applied
based on the neighboring error grid values.

Update the coordinates of each point using the shifts
calculated in Step 5.

Reconstruct the topology of the distorted grid, to
produce a distorted version of the original data set.

Step 2:
Step 3:

Step 4:
Step 5:

Step 6:

Step 7:

Potential Applications

The potential applications of the model are considered
to lie in several areas. First, from an educational per-
spective, a family of distorted but equally probable ver-
sions of the same data set could be used to illustrate the
uncertainty that might be expected when interpreting
the data. This could be a useful approach for data pro-
ducers to adopt when explaining the meaning of their
error statistics to potential users who may not necessar-
ily understand the statistics provided—especially now
that the use of GIS has become so diverse and there are
many new users without sound analytical backgrounds
in this field. These visual statements could form part of
the data quality reports (Figure 5).

For operational purposes, the model could be used to
determine the uncertainty of attributes derived from
area and length estimates due to positional error in the
original data. For instance, different versions of a road
centerline database could be created to test the uncer-
tainty in travel time and routing applications by run-
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FIGURES5. Inan educational role, the model could be used by data producers to generate visual samples of perturbed
~ data sets for inclusion in their data quality reports to help convey the meaning of their error statistics to

users.
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ning the same problem with perturbed data sets to as-
sess which solutions have the best overall results. In
other applications, more than one data set may need to
be perturbed. For example, if the problem is to deter-
mine the economic effects of flooding based on different
land uses, property values, soil types and flood zone
ratings, then each vector data set could be perturbed ac-
cording to its own positional error estimate before being
overlaid to identify land which is at highest risk of
flooding and the potential monetary loss. By running
the model a number of times, the resultant variation in
the financial amounts involved can be determined un-
der conditions of uncertainty.

Finally, the model may also be useful as a means of
densifying or “ungeneralizing” data, if we assume that
for certain types of data not only might the endpoints of
lines be distorted, but also the positions of intermediate

| points along them. While this approach would be un-

suitable for perturbing, for example, land parcel bound-
aries which are necessarily defined by their endpoints,
on the other hand it might provide a more realistic .
method of representing the boundaries of data subject
to natural variation. This could be achieved by first plac-
ing additional vertices along each line segment (the
usual means of densifying lines), and then applying the
model to provide shifts at all node and vertex locations
(Figure 6).

Conclusions

In this paper the authors have presented a model for
handling uncertainty in vector data which is an en-
hancement of their earlier work that dealt with grid cell
data only. The model permits different, but equally

FIGURE6. The model might also be employed to randomly densify features, but its use is not suited to all data types.
For example, it would not be applicable to cadastral boundaries, as in (a), where only the endpoints of lines
should be distorted, however for boundaries subject to natural variation, as in (b), independent distortion of
intermediate points along a line may provide a useful means of densifying features.
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probable, versions of point, line and polygon data sets
to be created via the introduction of distortion grids in
the x and y directions, which in turn are used to apply
coordinate shifts to every feature in the data to be per-
turbed. The paper discusses the underlying concepts,
the implementation issues affecting the model, and the
way in which it may be applied in practice. In particular,
it might be used to show positional uncertainty effects
alone, or else their subsequent effect upon derived at-
tributes based (for instance) on area and length calcula-
tions. It might also prove useful as a non-linear means
of randomly densifying line and polygon features.
While the model does not purport to be able to deal
with all cases of uncertainty in vector data, the authors
believe it nevertheless provides a useful advance on the
current body of knowledge and techniques in this field
until such time as formal models of spatial data error
are more widely developed and accepted.
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