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ABSTRACT

Concepts of mean, standard deviation, probability density, and confidence limits are .

well developed and generally familiar for scalar measurements, but fail to mmzmnmzum
well to objects in two dimensions. In the case of points, there are several noi.wm:no_,m
for the equivalent of the mean. We review the analogs of these scalar descriptions for
points, lines, areas, and tessellations, and their implementation in GIS. Well-known
statistics such as the Perkal epsilon band are placed within this general framework.
We present experimental methods for robust estimation of the equivalent of the mean
and standard deviation in some of these cases, and review experience with their use
and associated unsolved issues. Although the mean of a distribution of a scalar
measurement is almost always a possible member of the distribution, we present

arguments for the general proposition that the mean of a population of complex two

dimensional objects is not itself a member of the population. This paper discusses the
implications of these ideas for GIS and the mapping sciences.

INTRODUCTION

The mean or average is a well-known and well understood concept, readily nm_.nc_mﬂmm
for any set of simple measurements, such as areas, weights, or values. It is often
described as a measure of central tendency, or the central value around which a
sample of measurements is distributed. It can be thought of as the mmdm_m value most
descriptive of the sample. One important restriction on the mean that is often relevant
to GIS applications is that the measurements must be made on a measurement scale
having at least interval properties; it makes no sense to try to calculate the mean of a
categorical variable such as land cover class.

There are many reasons for wanting to generalize the concept of the mean to
geographic features. We frequently encounter different versions of the same feature
when different digital sources are available, and it may be desirable in such cases to
merge the knowledge of feature geometry that is present in each source. The term
“data fusion” has been used in this context. Sometimes one version is believed to be
more accurate than another, suggesting that they might be weighted differently when
it is desirable to combine information from both. The same concept of fusion occurs in
the overlay of polygons, when lines from different layers coincide in reality, but their
digital versions create slivers. In such cases we might think of sliver removal as
conceptually equivalent to finding a mean.

Besides its value as a descriptive parameter, the mean is also the basis of many
inferential tests, an important parameter of many statistical distributions, and n._Em key
to many forms of simulation. For example, given a mean and standard deviation, and
with the assumption that measurements have a normal distribution, it is possible to
generate samples of any size, and to use them in randomization tests and omrm_. Zwam
Carlo experiments. The equivalent in two dimensions would be the ability, given
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suitable parameters and assumptions about distributions, to simulate multiple
versions of geographic features, in order to analyze the propagation of error and
uncertainty, for example (Goodchild and Gopal, 1989). These two operations of
estimation and simulation form a loop, so one test of these methods is that just as for
univariate measurements, one should be able to take a mean and standard deviation,
simulate a sample suitably dispersed about the mean, and then estimate
approximations to the original mean and standard deviation from the sample. The
statistics of this process are well-known for univariate measurements, particularly for
the normal distribution.

Unfortunately, the familiar parameters of univariate statistics—mean, standard
deviation, variance, etc—do not generalize well to two dimensions. Maps and
geographic data sets are derived from scalar measurements, but the process is often
complex, and it is generally not possible to regard a geographic data set as an
ensemble of independent measurements. The purpose of this paper is to explore the
degree to which generalization is possible, with special reference to the mean. The
paper begins with a review of previous work in this area, and extends the motivation.
We then present experimental methods for estimating the mean line, based on ideas
originally presented by Edwards (1994a,b). The final section of the paper inverts the
approach, by using the mean together with a measure of dispersion and a stochastic
process to simulate a sample of lines.

Conceptually, there is some overlap between the framework of this paper and that of
cartographic generalization, and its inverse. The mean of a set of features should
preserve the signal present in each sample, but attempt to remove the noise, or any
other aspects of a line that are inconsistent with the remainder of the sample. Thus an
averaging process can be expected to smooth. In that sense, the mean line can be
conceived as analogous to a cartographic generalization, and its inverse to the addition
of detail (Dutton, 1981), although we would not propose the techniques in this paper
as suitable for automated feature generalization.

This point has an interesting corollary. For univariate measurements, the mean is itself
a possible measurement, although it may be determined with greater accuracy through
the process of estimation. But for geographic line and area features, the mean feature
can be expected to be more generalized than the observed samples. The mean of a set
of shoreline estimates, for example, is not itself a member of the population of possible
shoreline estimates. This point has -profound implications for kriging, where the
problems it creates for GIS suitability analysis have already been pointed out by
Englund (1993).

BACKGROUND

Geographic data can be partitioned into two broad categories, depending on the
conceptual understanding of the data’s meaning. Fields are defined as variables
having single values at every point in the geographic plane, and can be further
subdivided depending on whether the variable is measured on a nominal (categorical)
or interval/ratio scale. Digital representations of fields include TINs, rasters, point
grids, irregularly spaced points, digitized contours, and non-overlapping polygons
(polygon coverages). Although the digital representation of a field involves discrete
geometric objects (points, polylines, or polygons), these objects generally have no real-
world meaning. Instead, fusion of two fields is better conceptualized as a fusion of the
two field variables. In the case of interval/ratio fields, this might be done by taking a
suitably weighted mean value; in the case of categorical fields, by taking the modal
value. For example, the mean of two elevation fields 23 and zy might be computed as
a field (z)+2z9)/2.
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Although polygon coverages (irregular tessellations) are normally associated with the
representation of fields, such as population density or land cover, it is possible to
interpret the notion of mean objects in this case. It is common, for example, for states
to be subdivided into regions, and for different state agencies to use different,
incompatible schemes. One common consequence of this for GIS users is the need to
transfer attributes from one scheme to another; for example, to transfer unemployment
statistics collected by the state labor agency and tabulated for their regions, to the
regions used by the state housing agency. In such cases the idea of a mean
regionalization may be useful, as a basis for comparison, or as the closest
approximation to a consensus.

Consider a set of N geographic building blocks, such that every regionalization is
some combination of these blocks. Suppose there are M regionalizations. Count the
number of times Xjj that contiguous building blocks i and j are allocated to the same
region; the largest possible value of Xij is M (x;;=0 for non-contiguous blocks). Scan the
N by N matrix x for the largest value; join the corresponding building blocks; zero the
value; and repeat until a predetermined number of regions has been created. We have
used this method to find the mean regionalization of seven California state agencies,
and Monmonier has described a similar approach in a different context (Monmonier,

1982).

The primary concern in this paper is with the other class of geographic data, which
originates in what has been termed the “entity view”, and consists of sets of discrete
point, line, or area objects, possibly overlapping, and surrounded by empty space. The
objective is to explore generalizations of the mean to sets of points, polyline
representations of lines, and sets of polygons.

In the case of points, several approaches can be used to generalize the mean to two
dimensions. If one takes the equation defining the univariate mean, a simple
generalization uses the same equation twice to calculate a mean for each coordinate,
giving a point generally known as the centroid. Alternatively, the variational property
of the mean, that the sum of squared distances from it to each point is minimized, can
be used to define a two-dimensional generalization, and it is easy to show that this
also finds the centroid. The centroid is not the point that minimizes the sum of
distances, but then neither is the mean in one dimension, this property belonging to
the median.

The statistics of the centroid have been explored extensively, and are used widely in
surveying adjustment. Measures of dispersion about the mean, the two-dimensional
equivalent of the standard deviation, are commonly used as measures of point
positional accuracy. The centroid has also been used as a useful summary of the
geographic position of a point set, particularly in capturing the “center of population”,
or the differences between two subsets of points, or two times. In summary, the
concept of the mean generalizes easily to point sets.

In the case of lines, generalization is more problematic. Although they may be
conceived as continuously curved in reality, lines are most commonly represented in
spatial databases as polylines, or straight lines between points. One possible
generalization would be to focus on the points of a polyline, treat them as repeated
measurements of the same true polyline, and calculate mean positions. In some cases,
where the line in reality is itself a polyline, and the truth is defined as straight
mathematical lines between points, as is often the case for surveyed boundaries, each
estimate of the line can be treated as an assemblage of point estimates. In other cases,
such as rivers or coastlines, this model fails because it becomes generally impossible to
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wzmﬁnr points between polylines. In general, the selection of points in a polyline is
itself part of the sampling process, so any procedure for estimating a mean line must
attempt to approximate some true, continuous line rather than its polyline
representation.

The removal of polygon slivers has already been cited as a possible application of a
mean line. A common approach is to assume that both edges of the sliver are equally
likely estimates of the true position of the line, to select one edge arbitrarily, and to
delete the other. A less arbitrary approach would be to identify the “medial axis
transform”, defined in this case as the set of points within the sliver polygon that are
equidistant from the two edges (the medial axis transform is normally defined as the
set of points equidistant from any two points on the polygon; Lee, 1982; Pavlidis,
1982). While this method guarantees a mean line inside the sliver, it has the
unfortunate property that the set of points is a mix of straight line segments and
parabolic curves. It would be possible to weight the lines differently, but this
approach does not generalize well to more than two lines.

The most common approach to defining the dispersion of line features around a mean
is often attributed to Perkal (1966), and termed the “epsilon band”. Goodchild and
Hunter (1995) have proposed a robust statistical implementation in which epsilon is a
function of cumulative percentiles of line length. The 95th percentile, for example, is
defined as a band of width egg about the mean line that contains 95% of the length of
the sample line; as such, it can be measured for a single sample line by comparing it to
some source line of higher accuracy.

The requirements of a mean line or area would seem to be as follows: 1. Any method
of estimation should be robust, capable of taking a wide range of line or area inputs
and producing an acceptable output that is topologically a line or area respectively; 2.
Although the inputs will be polylines, the output should be conceptually closer to a
true curve. Since the output must also be a polyline or polygon as it will be in digital
.3:? this might be interpreted as meaning that the output should be denser than the
inputs; 3. The procedure should emulate the unbiassedness criterion of statistical
.mmsn_mmoﬁ that is, the estimate should tend to the true mean as the sample size
increases.

Consider, for example, the following procedure. To estimate a mean area, calculate a
field whose value at any point is the proportion of sample polygons that contain the
point. Then find the 50% isoline of the field (Shi and Tempfli, 1994). To estimate a
mean line, first extend each polyline to form two half-planes, based on the direction of
the line at each end; define a field whose value at any point is the proportion of
polylines for which the point is in one of the half-planes; finally, find the 50% isoline of
the field. Although the method is robust for areas (less so for lines because of the need
for arbitrary extension to create half-planes), it does not satisfy the first criterion above
since it is possible for the output to include isolated islands, and holes in the case of
areas.

ESTIMATING MEAN LINES

As discussed, it not difficult to conceive of an infinite population comprised of all
possible polyline representations of a particular geographic feature. By analogy to the
::Emam”m case, this population would be distributed around a true or mean line, with
a &mwmnmmoz described by a parameter analogous to standard deviation. In this
section, we discuss a technique for estimating the mean based on a method described
by Edwards (1994a,b).
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Each line j, j=1,n, is first given a parametric representation, by expressing the
coordinates of its position (x,y) as functions of distance s along the line, J@ and 5@.
For convenience, the scale of s is normalized to the interval [0,1}, where s=0 is the
beginning node of the line and s=1 the ending node.

If we are interested in calculating a mean representation for a sample of curves, then
the end points of the curves must correspond, to some degree, and be in close
proximity. Areas must be handled by identifying corresponding starting and ending
points, and adopting the same clockwise or anticlockwise order for each sample
feature. This requirement will be relaxed in a subsequent section, but at this point we
will assume that the sample of lines is taken to represent the same geographic feature,
and they have a reasonably high degree of linear correspondence. Given that this is
the case, and since both x(s) and y(s) are single-valued functions of s, a mean curve can
be described by averaging x and y over j at each value of s. The procedure guarantees
that the output is topologically a line or area, as appropriate, but it does not prevent
the existence of loops. .

In reality, lines and areas will be represented as polylines and polygons, so x(s) and
y(s} will be evaluated only at sampled points, and these points will be unique for each
sample feature. A simple procedure is to represent both xw@ and 5@ as polyline
functions, allowing the value of the x and y functions to be determined by linear
interpolation at any value of s. Then the position of the mean line can be evaluated at
every sampled value of s, ensuring that the mean line’s polyline representation is
denser than the inputs as required above. In general, each point on the output
polyline will be the result of averaging one observed value of x(s) with n-1 interpolated
values.

The procedure is depicted in Figure 1 and the steps of the procedure are given as
follows: .

For a given set of polylines that represent the same geographic line or area feature:

1. Identify corresponding end points s=0 and s=1.

2. Calculate the s value for each intermediate point in all the polylines.

3. Sort the points in all lines by their s value.

4. For each point (in ascending order of s):
4a. Obtain values of x_@ and 5@.
4b. Calculate the mean over j of x(s) and y(s), using weights for each line as
appropriate; standard deviation in x and y directions can also be calculated.

5. Connect the resuitant mean points to form a new “mean polyline”.

1

Figure 1: An example of the mean polyline interpolation process for two
equally weighted polylines. The solid points are input and the white points are
interpolated.
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The method offers two alternatives for defining standard deviation: as an attribute of
each point on the output polyline, as suggested above; or as a single estimate for the
entire line. Because each input line is represented as a polyline, we can expect the
resulting standard deviation to be an underestimate of the value that would have been
obtained had the sampling density along the input lines been higher.

As noted earlier, the need to define matching start and stop points, s=0 and s=1, for
each line can present a significant problem. Edwards (1994a,b) discusses various
approaches, including matching the positions of well-defined points, such as
prominences on shorelines or river crossings on roads, but this requires human
intervention in most cases.

Alternatively, one might try to match the lines by searching for closest points; the
location of s=0 on line 2 could be defined as the closest point to the location of s=0 on
line 1. Figure 2a shows an example of this problem.

~

Figure 2: An example of the need to search for matching start points on lines (a)
and polygons (b).

For polygons, the issue of point matching is further complicated. In this case, any
point in a given polygon can be used as s=0, and a search made for the closest match in
the other polygons. In this case, s=0 and s=1 coincide, and the mean polygon
algorithm handles this exception accordingly. Figure 2b shows an example of how s
might be defined for a set of polygons.

Figure 3a shows an example mean line (darkest line) calculated from three equally
weighted versions of the same shoreline, and Figure 3b shows a mean line that is
progressively weighted (grey lines) towards one of the three shorelines used to
calculate it (darkest line). Note the sharply different levels of generalization of the
three lines. Figure 3b depicts a problem that arises in calculating a mean line across
levels of generalization. The method assumes that the process of generalization
produces a uniform shortening of the line, so that points of equal s stiil correspond.
However, many generalizations will result in deletion of features such as indentations,
and thus non-uniform shortening. Figure 3b shows several instances where averaged
features are offset as a result. As Edwards (1994a,b) suggests, a simple solution is to
add more tie points between the lines, but whether this must be done by operator
intervention or can be automated remains to be seen. In principle, tie points could be
added automatically for every point based on minimum distance to the other line.
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Figure 3: (a) A mean line (darkest line) calculated from a sample of three
representations of the same section of shoreline. (b) A mean line progressively
weighted towards one of the three lines (darker line).

UNCERTAINTY MODELING

Earlier, we noted that the conceptual inverse of the ability to estimate a mean for
complex geographic features is the ability to generate a sample om.mcnr wmm:.unmm ?omz
knowledge of the mean. This second task is the subject of this section. Arguing again
from analogy to the univariate case, the normal distribution is a commonly used vmm_m
for simulation, and is observed to achieve a good match with many empirical
examples. It can be thought of as a stochastic process which generates mma._u_mm m.?m:
suitable parameters, specifically the mean and standard deviation. In two a_.amzm_osm‘
our problem is to devise a similar process which when given a mean line .m:& a
suitable measure of dispersion, such as the standard deviation &mn_.hmmma in the
previous section, or egs as discussed by Goodchild and Hunter (1995), .s:_._ m.msm_,w.»w a
sample of possible positions of the feature. The value of such a En.xmm_ lies in its wc:.:%
to clearly depict the possible variations of a particular representation that might exist.
These models have widespread practical application, as they allow an analyst to assess
the possible outcomes of a spatial process by generating a sample of mm:.m:% likely
inputs and assessing how changes in these inputs propagate through a mw.m:m_ process
to impact any outputs. An example of this modeling approach might 5<.n.v_<m
generating a sample of equally likely digitized representations of =.aw mean to gain a
better understanding of how the uncertainty introduced by digitizing affects the
calculation of a feature’s area.

In this paper, the concern is with modeling the ::8:&.:@ m.s vector mmomnmv.rmn data,
or more precisely, the uncertainty inherent when merging linear representations of a
selected geographic feature from disparate sources. Hunter and Ooonmn?_m (1995)
have developed an appropriate uncertainty model for this purpose that is capable n.&
generating a sample of equally likely vector representations of nmm_:%.. Although n.rmz.
model is intended to further our understanding of the effects of positional uncertainty
on spatial processing, it can also be used to test the robustness of the mean line

procedure discussed in the prior section.
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The model is based on generating two spatially autocorrelated random fields that are
then combined to create a random vector distortion field for perturbing positions. The
distortion field is assumed to have a bivariate normal distribution with equal variances
and zero covariance. To postpone the problems associated with grid resolution and
other finite representation issues, this method can be conceptualized in continuous
space.

An important concept in modeling the uncertainty in spatial data products is the
inherent spatial autocorrelation of distortion. If distortion is conceptualized as
spatially continuous, then certain conditions are imposed on the continuity of the
vector field, to avoid rips and folds in the distorted result. The probability of violating
these conditions is minimized by imposing a structure of positive spatial
autocorrelation on the random fields.

There are a number of issues that must be handled when moving this model into a
discrete spatial data model domain, and these are addressed systematically by Hunter
and Goodchild. They include the generation of the distortion field, the spatial
sampling interval of the distortion field, preserving topological integrity between
distorted features, and calculating positional shifts for data points that do not coincide
with cell centers in the distortion grids used to represent a distortion field.

Two significant issues to consider in generating the distortion grids are the magnitude
of the random field and its degree of spatial autocorrelation. Ehlschlaeger and
Goodchild (1994) have implemented a method for generating random fields with
inherent spatial autocorrelation within the GRASS environment called
rorandom.surface. The generated field corresponds to a normal distribution with a
theoretical mean of 0 and a standard deviation of 1. Hunter and Goodchild (1995)
recommend generating an distortion field with a standard deviation equivalent to the
producer’s horizontal distortion estimate for the data set, and, if this information is
available, a given random field can be multiplied by a scalar to adjust its standard
deviation to correspond to this value. In terms of autocorrelation, r.random.surface
takes two parameters: a distance decay exponent and a minimum distance of spatial
independence. Both are used to control the form of the autocorrelogram of the
simulated random field; the distance decay exponent controls the rate of decrease in
spatial autocorrelation with distance, and the minimum distance parameter controls
the autocorrelogram’s range.

Spatial autocorrelation is essential in generating the perturbation field as the
topological integrity of features must be preserved. If a line’s neighboring points are
perturbed by varying magnitudes, then there is the possibility of introducing a fold,
where one point “overtakes” another point resulting in a change in the topological
relationship between the two points. In this case, the signed difference in the
perturbation’s components between neighboring points is important and not the
absolute difference. A point to the right of another point can move right by more than
the point to the left without causing a topological problem. In general, if u is the x
distortion field and dx is the cell size, then u(x+dx) - u(x) < -dx will cause a fold. In
terms of u as a continuous function, du/dx or du/dy must be less than -1 for a fold to
occur. Hunter and Goodchild (1995) suggest using bilinear interpolation to determine
the value of the vector perturbation field at points other than grid points. Given the
geometric properties of the surface between grid points when interpolated in this way
(8u/ox independent of y; Ju/dy independent of x), a test of the difference in
perturbation vectors at neighboring grid points is sufficient to determine the presence
of folds in the interpolated surface.
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Hunter and Goodchild {(1995) recommend a distortion grid resolution smaller than the
minimum distance between any two points in a polyline or polygon. A possible rule
of thumb is a grid resolution of 0.5mm at the scale of the map from which the data
originated. If this information is not available, the grid resolution should be set to
some very small value.

Figure 4 shows the results of simulation of from a mean shoreline and standard
deviation. The mean shoreline was generated using the method described for three
sample shorelines. Standard deviations for the x and y directions were obtained by
summing the squared distances between each point in each sample shoreline and the
corresponding point in the mean line. Distortion fields (x and y components) were
generated at a resolution of 3m, which is less than the minimum distance between
points in the mean line. The nine simulations in Figure 4 are the result of varying the
distance decay exponent from 1 to 0.5 to 0.1, and varying the minimum distance to
independence from 200m to 400m to 600m. The x and y components of the distortion
field were multiplied by the magnitude of the standard deviation for x and y
(approximately 30m and 90m, respectively). The distortion fields were evaluated
between grid points using bilinear interpolation.

/J

/

Figure 4: Sample shorelines (grey lines) generated by distorting a mean shoreline
with an random, autocorrelated vector field. The darker line is the actual shoreline
from one of the sources and is shown for comparison. The distance exponents
(columns, from left) are 1.0, 0.5, and 0.1; the minimum distance to independence
(rows, from top) are 200m, 400m, and 600m. The cell size is 3m and the area
shown is 250 by 333 cells.

Figure 4 clearly demonstrates the importance of the spatial autocorrelation parameters
in controlling the incidence of loops and other topological problems resulting from
distortion. In general, more linear distance decay (values closer to 1.0) and longer
minimum distances of independence are less likely to create problems. Because the
dispersion parameter was obtained by comparing representations at three different
Jevels of generalization (Figure 3) the distortions are larger than they would likely be
in modeling other sources of uncertainty, such as digitizing error. Note also the
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importance of matching, made obvious here by the use of one source line rather than
the mean line in the comparison.

CONCLUSION

We have suggested that the concepts of mean, standard deviation, estimation from a
sample, and simulation from a distribution can be usefully extended from the usual
scalar context to two-dimensional objects in GIS. Applications range from data fusion
to sliver removal and enhancement of line detail. We have explored several methods,
noting some of the problems associated with each. While it is robust, the principal
problem with the method based on parametric line representations is its sensitivity to
the choice of matching points, and methods of automatic matching need to be explored
in greater detail. Of the other methods, averaging based on binary field
representations of half planes is robust and attractive, but requires that the user accept
the possibility of holes and islands in the result. The “medial axis transform”, as
interpreted above, is also attractive, but will require extension to more than two lines.
We have also noted that the combination of estimation and simulation can be used as
the basis for a rigorous test of these methods, and will be continuing this line of
research in the future.
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