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A Methodology for Reporting Uncertainty
in Spatial Database Products

Gary J. Hunter, Mario Caetano and Michael . Goodchild

The term ‘uncertainty’ is used to refer to differences between the information provided by a spatial database, and
the corresponding information that would be available to someone able to observe and measure the real world di-
rectly. It includes the effects of errors made during creation of the database, as well as those of the information loss
that occurs during generalization. A general model of spatial data uncertainty is presented, and examples of its ap-
plications are described. The model forms the foundation for a general approach to handling uncertainty in the ap-
plication of spatial databases and GIS. The use of the model is illustrated with a simple example of the analysis of a
wildfire in a remotely sensed image. The approach allows uncertainty to be modeled and visualized, and its effects

on the results of analysis to be simulated and evaluated.

We experience difficulties in articulating the quality of
information represented in a database principally be-
cause we don’t understand how to analyze data based
on information about its qualities. Even if a database
were to provide us with a feature’s quality attributes
along with its shape and topology, our prevailing tools
are usually incapable of modeling most of its proper-
ties, and those procedures we do have are pathetically
crude . ..

(Dutton 1984, p. 276).
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ile researchers have invested considerable re-

W'ls‘(‘)‘urces examining the modeling and commu-

nication of uncertainty in spatial database
products, the results of their labor will not be recog-
nized until the user community can apply the tech-
niques in everyday, operational situations. Thus, the de-
bate about uncertainty has now reached the stage where
there is a critical need for tools to be developed to assist
users in better understanding the outputs derived from
their systems, as acknowledged in the quotation given
above by Dutton (1984). Through such knowledge they
will be placed in an improved position to make data
quality assessments, by comparing the quality of their
products against the requirements of the tasks for which
the products are to be used.

Before discussing the various options available for
dealing with this problem, some explanatory remarks
are required regarding the use of the term “uncer-
tainty.” In general terms, uncertainty denotes a lack of
sureness or definite knowledge about an outcome or re-
sult, and synonyms include “doubt” (a lack of certainty
witnessed by the inability to make a decision), “dubios-
ity” (a vagueness or conceptual confusion), “skepti-
cism” (implying a lack of faith or trust in the reliability
of something), and “mistrust” (a genuine belief based
upon suspicion).

In the context of spatial databases, the authors sug-
gest there is a clear distinction to be made between “er-
ror” and “uncertainty,” since the former implies that
some degree of knowledge has been attained about dif-
ferences (and the reasons for their occurrence) between
the results or observations and the truth to which they
pertain. On the other hand, “uncertainty” conveys the
fact that it is the lack of such knowledge which is re-
sponsible for hesitancy in accepting those same results
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or observations without caution, and often the term “er-
ror” is used when it would be more appropriate to use
“uncertainty.”

It is well known that there are many potential sources
of error in spatial databases (Hunter and Beard 1992),
but because so little is understood about the way in
which those errors (either singly or in conjunction with
each other) affect the outcome of the final products (be
they displays, maps, graphs or reports), there is a resul-
tant uncertainty concerning the level of trust which
should be placed in them. In some ways, the distinction
between error and uncertainty is analogous to the legal
belief that a person is “innocent until proven guilty,”
since in many cases conceptual models of spatial data-
base error simply do not exist. It is suggested that until
that situation improves, “uncertainty” offers a more ap-
propriate means of describing such lack of proof. This
does not mean that uncertainty should always be substi-
tuted for error, as there already exist several well-estab-
lished and accepted error models for given spatial oper-
ations. They are properly described as such, however in
situations where there is little knowledge of the actual
errors involved—as in the case study described—it is
uncertainty which will be referred to by the authors.

" One of the largest sources of uncertainty in spatial
databases is a byproduct of the process of cartographic
generalization. For example, a map may show an area
as having a uniform land cover class, even though it is
known that the land-cover class in the area is not in fact
uniform. This leaves the user of the database uncertain
as to the actual land-cover class to be found at a specific
point within the area. A very naive user who is unaware
of the nature of cartographic generalization might see
such a difference between database contents and
ground truth as error.

At this time, there are three options available (Good-
child, Lin, and Leung 1993) for dealing with uncertainty
in spatial databases, and communicating such informa-
tion to users, viz.: :

1. omit all reference to it,
2. attach some form of descriptor to the output,
3. show samples from the range of possible maps.

The first option (“do nothing” approach) treats the
problem by ignoring it; undoubtedly the easiest solution
to adopt, but one which potentially places at risk the
reputations of decision-makers (and their agencies) who
have to act on the basis of such information. The second
option would see the use of descriptors such as epsilon
bands, misclassification matrices, reliability diagrams,
and root mean-square error estimates. In effect, these are
a caveat to users and while they give warnings about
product uncertainty, they provide little assistance in
showing how the resultant output might vary spatially.
Although, with further development they can be more
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usefully interpreted, as Hunter and Goodchild (1995a)
have shown in the case of the root mean-square error es-
timate for digital elevation models (DEMs). Finally, dif-
ferent versjons of the same map might be presented to
users to illustrate the uncertainty to which their prod-
ucts are subject due to the particular combination of
data, error estimates, algorithms and process models
which have been chosen for the task.

This latter approach is the one preferred by the au-
thors, since it would appear to have the greatest poten-
tial benefit in both communicating uncertainty and at
the same time educating the user community in the sig-
nificance of this issue. Accordingly, this paper presents a
methodology which permits uncertainty reporting for
certain types of spatial database products. By presenting
the level of uncertainty which resides in an output, such
a methodology might assist agencies in determining the
degree of uncertainty they are willing to tolerate before
it either changes the decisions made on the basis of that
information, or else (in the worst case) causes the bene-
fits of spatial database usage to be lost. In the reverse
role, the methodology could provide advance testing of
different combinations of data, error estimates, algo-
rithms and models to assess which ones are most likely
to suit a user’s needs.

At this stage, the methodology is restricted to the
study of grid-cell data and, specifically, the outputs de-
rived from the use of DEMs; however, even in this lim-
ited role it has considerable relevance to natural re-
source and environmental applications where the raster
data model has greater suitability for representing in-
herently continuous variation. In addition, the raster
model more easily accommodates simulation tech-
niques such as those used in this research. The paper
discusses:

1. the underlying model of uncertainty employed,

2. its potential applications,

3. how the model can be integrated into an overall methodol-
ogy to handle uncertainty, and finaily

4. a case study of its use relating to the adjustment of re-
motely sensed data for topographic effects, as applied to
the detection of burnt land in mountainous areas of central
Portugal.

The Underlying Model of Uncertainty

The basis of the approach is a model of the uncertainty
present in a spatial database. While the database may
indicate that a point has some characteristic value, such
as its elevation or land cover dlass, in general it is clear
that the value recorded in the database may not be the
true value. The amount of uncertainty is sometimes
known—for example, producers of DEMs often publish
estimates of root mean square error, and producers of




land cover maps may provide information on misclassi-
fication probabilities. In such cases it is possible to
model uncertainty and its effects by introducing ran-
dom variation. Where the amount of uncertainty is un-
known, it is possible to introduce different amounts of
random variation to explore their effects. However, the
spatial nature of the data requires that the random vari-
ation be spatially autocorrelated, and thus demands the
use of specialized techniques.

An error model can be defined as a mechanism for
introducing random variation in order to represent error
or uncertainty. Any one execution of the mechanism cre-
ates one pattern of distortion, and thus one sample from
a population of possible patterns of distortion. The term
for such a single execution of the mechanism is a ‘real-
ization’ of the error model. One realization might repre-
sent the errors introduced by one person’s effort to digi-
tize a map, or the uncertainty generated by one
cartographer’s generalization. A sample of realizations
might represent the variability due to different foresters’
interpretations of the same aerial photograph. When
several realizations are displayed rather than a single
map, the effect is to convey a sense of uncertainty. In ad-
dition, realizations can be used to investigate the effects
of uncertainty on the results of GIS analysis due to error
propagation. One error model for categorical spatial
data has been described by Goodchild, Sun and Yang
(1992).

The traditional Gaussian model (where the standard
deviation is a measure of error or uncertainty) is useful
for modeling variation in single measurements, but can-
not be used to deal with the spatial case where errors
display strongly correlated patterns. The error at one
point in a DEM, for example, is likely to be strongly cor-
related with errors at neighboring points. In a previous
paper, Hunter and Goodchild (1995b) argued that while
it is possible to perturb a data set according to an error
descriptor (such as an RMSE value for a DEM) without
consideration of spatial autocorrelation between point
sample elevations, the process may be stochastic but
nevertheless lacks ‘truthfulness’—since adjacent eleva-
tions can be severely distorted creating large pits and
peaks which do not intuitively occur at the resolution of
a 30m X 30m grid. This approach produces what are
known as “random maps.”

On the other hand, assumption of complete spatial
dependence between neighboring points produces real-
izations of the DEM which are “truthful” but not sto-
chastic, since elevations are constrained to maintain
their relative differences to each other and the introduc-
tion of a noise value has the effect of moving all DEM el-
evations up or down by a constant amount. Hence,
there is a need to find the appropriate pattern of spatial
dependence for any particular application. For the

model used in this paper, and by Goodchild, Sun and
Yang (1992), spatial dependence is described by a single
parameter r in the range 0 < p < 0.25, which meets the
dual requirements of being stochastic as well as “truth-
ful.” The limit of 0.25 arises because a raster is used, and
spatial dependence is defined by the relationship be-
tween a cell’s value and those of the four neighbors with
which it shares a common edge (Cliff and Ord 1981, p.
147). This is perhaps the simplest possible model of spa-
tial dependence. If additional information were avail-
able about the actual spatial dependence between errors
in a given application, this simple model could be re-
placed by a more accurate version.

By producing distorted versions of the DEM for dif-
ferent p values, and by studying the change in differ-
ences between the realized data and the original DEM, it
is possible to make reasonable deductions as to what the
appropriate p values may be, or at least to place limits
on the range, and to gain insight into the effects of vari-
ous levels of spatial dependence on the outcomes of GIS
analysis. Hunter and Goodchild (1995b) derived sepa-
rate realizations of slope gradient and aspect values
from a DEM with the latter, in particular, showing a
marked change in response at approximately p = 0.24,
while slope gradient only started to vary significantly
from p = 0.20 onwards.

Of course, the realization process need not stop there,
as the different slope gradient and aspect maps can be
input to, say, hydrologic models to produce alternative
realizations of drainage basin parameters, which in turn
can be used to derive realized runoff characteristics. At
any stage, the differences between the realized maps
and the original (as produced from the source data
without any consideration of uncertainty) can be ana-
lyzed to assess the resultant effects. The attractiveness of
this approach is that even though we do not know how
error is being propagated, its effects are nevertheless
displayed.

A Methodology to Handle Uncertainty

The methodology to handle uncertainty embodies the
model previously described (Figure 1). It consists of four
steps, with the first one requiring the user to combine
whatever data, processes and models are needed to gen-
erate the desired output-in other words, applying the
spatial database as would normally be done without
any consideration of uncertainty. From the beginning of
the procedure, a log or watch file is kept of the com-
mands used which will later be applied in producing
the realizations.

In the second step, the parameters necessary for the
realization process are determined. By reading system
variables associated with the source data file, the num-
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FIGURE1. A Methodology for Reporting Uncertainty in Spatial Database Products.
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ber of rows and columns in the data file, the cell size,
and the geo-referencing details of the data can be ascer-
tained. These will be required later when the noise files
are to be transformed to agree with the actual data sets
used. An error estimate for the source data will also
need to be identified, and this can take the form of ei-
ther a global value for the file, or else a separate field in
the database which may be subject to spatial variation.
At this stage, the watch file of commands may need
to be edited by the user to include only those which
were finally applied in the procedure. Any constraints
applied during processing will also be embedded in this
file, such as in a viewshed computation where cells im-
mediately surrounding the viewing point are usually
masked out or held fixed (and therefore assumed to be
always seen) so that their elevations are not perturbed,
thereby possibly obscuring large areas of the viewshed.
While not a direct step in the realization procedure as
such, the noise files to be employed would usually be
previously computed and then permanently stored in
the system for future use. The way in which they are
generated has already been described by Hunter and
Goodchild (1995b). To date, it has been considered suffi-
cient for most applications tested for about ten files to be
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held for each p value, although users would have the op-
tion of creating a greater number of noise files for spe-
cific tasks in the final module of the methodology. The
default p values chosen for the noise files are 0.0, 0.05,
0.10,0.15,0.20,0.21, 0.22, 0.23, 0.24, 0.245, and 0.249.
Again, the user has the option of producing noise
files with other p levels in the final module. As for the
maximum value of p offered (0.249), experience has
shown there is little to be gained from using p values
higher than this since the realization process becomes so
constrained that there is no discernible difference be-
tween the realized maps and the original product. In
Step 3 of the methodology, it is expected that users will
want to see a small number of initial trial realizations
and the default range of p values listed above is applied.
A single realization for each value is performed by first
applying the parameters derived from Step 2 to georef-
erence and transform the coordinates of the noise grid.
Next, the error estimate (usually an RMSE for DEMs) is
applied to map the noise values from a Normal distrib-
ution of N(0,1) to N(O,RMSE). This adjusted noise file is
added to the source data to produce a realization to
which the commands employed to create the original
database product are applied. The realized maps and



the differences between the realizations and the original
outputs can be displayed in map or graph form.

Finally, in Step 4 of the procedure the user may
choose one or more approaches for more detailed inves-
tigation of product uncertainty, as discussed in the pre-
vious section, and with a greater variety of reporting
output products available.

A Case Study in Assessing Uncertainty

The case study to be discussed relates to mapping areas
burnt by forest fires through the use of remotely sensed
Thematic Mapper (TM) imagery. In rugged areas in par-
ticular, many researchers have reported the problem of
confusion between shadowed and burnt regions as they
both appear the same in most of the bands. Similarly, if
terrain corrections are not applied, it is difficult to dis-
criminate between differing degrees of fire severity
since a given area may seem darker not because the fire
was more intense, but because it lies on a slope that re-
ceives less light by area unit.

Traditionally, DEMs have not been used as part of the
assessment for fire severity mapping, but research at the
University of California, Santa Barbara, is underway to
determine how consideration of topographic effects on
the satellite signal may be used to counter this problem,
which requires a radiance model to be applied to correct
(or normalize) the radiance data for terrain differences
(Caetano 1993, personal communication). Normalized
radiance values are already commonly used in other ap-
plications of remote sensing in mountainous areas, and
once derived may be used with traditional image-analy-
sis techniques such as supervised and unsupervised im-
age classification, and density slicing.

The test site lies in central Portugal near Pampilhosa
da Serra, and a DEM with a cell size of 30m x 30m was
used as the basis for normalization of the TM imagery. -
Figure 2a shows a hill-shaded view of the DEM cover-
ing the test site, while the same area is also delineated
on the unclassified TM Band 4 scene in Figure 2b in
which the effects of fire clearly show in the middle of
the image as regions of dark gray/black color. The por-
tion of the DEM used for this research measures 353
rows by 272 columns (or about 10.6 km by 8.2 km), with
elevations ranging from 287m to 1020m. Unlike DEM
data supplied by the U.S. Geological Survey, an estimate
of the elevation error for the DEM is not available, and
so on the advice of researchers familiar with the Por-
tuguese digital mapping program the standard devia-
tion for elevation error has been estimated to be 10m.

The traditional procedure used by image analysts is
to calculate the slope gradient and aspect for each cell in
the DEM and then combine them with the sun’s zenith
and azimuth angles at the time of image capture (taken

FIGURE2a. A hill-shaded view of the test site DEM.

FIGURE 2b. . Hlustration of the darker burnt area in the
unclassified TM scene.
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from the file header or else calculated for the time of day
and the latitude and longitude of the site). This informa-
tion is used to compute the cosine of the incidence an-
gle, which has values in the range 1.0 to +1.0. Thus, a
cell with an aspect equal and opposite to the sun’s az-
imuth (in other words, facing the sun), and a gradient
equal to the sun’s zenith angle (that is, perpendicular to
the sun’s rays), will receive the maximum amount of ra-
diance and have an incidence angle of 0° with a cosine
of +1.0. The formula for the cosine of the incidence an-
gle (i) is given by Equation 1: :
cos (i) = cos(sun zenith) * cos(cell gradient) + sin{sun zenith) *
sin(cell gradient) * cos(sun azimuth—cell aspect) M

Cells which have an incidence angle cosine equal to
or less than zero either lie in a plane parallel to the direc-
tion of the sun’s rays or else are on reverse hill slopes
(Figure 3). These cells are deemed to be in ‘self shadow’
and are not operated on in the traditional research pro-
cedure due to the difficulty of working with diffused
light. There is a further process which identifies cells
that are in ‘cast shadow’ from larger features which ob-
scure them from direct sunlight, and these cells also are
usually excluded from further calculations.

The incidence angle cosines for all cells in the DEM
are then used as a means of normalizing the radiance
values of pixels in the TM image, given that radiance is
affected by the nature of the terrain to which it applies.
At this point it should be noted that corrections will
have already been made to ensure that both the DEM
and the TM images have the same georeferencing and
cell/pixel size. The radiance values, being the raw sig-
nals from the image in the range 0 to 255, are then nor-
malized by computing the value they would have if
each pixel was horizontal, as in Equation 2:

Ly =L/cos() @

where L denotes the radiance value, and Ly is the nor-
malized radiance value.

FIGURE3. Variation in the incidence angle (i) with cell
postion.

Direction of Sun
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Having discussed the analyst’s traditional proce-
dures for deriving normalized radiance values for each
pixel, it is clear there is considerable potential for apply-
ing the realization methodology to assess the uncer-
tainty present in the final output, which would include
any effects arising from the DEM elevation error, the al-
gorithms used to calculate slope gradient and aspect,
and the formulae applied to determine the incidence an-
gle cosines and the normalized radiance value. In this
example we focus on dealing with the uncertainty asso-
ciated with normalization, since that was the primary
concern of the researcher conducting the major study;
however, there is no reason why the process outlined
here could not continue through to the next stage of
analysis of the effects of uncertainty on fire-severity
modeling.

The difference between the traditional approach to
calculating the terrain-corrected Ly values and the pro-
posed approach permits their uncertainty to be assessed
(Figure 4). The latter technique applies elevation noise
files, with varying levels of spatial autocorrelation, to
the original DEM to establish corresponding sets of
slope gradient and aspect files for the test site. Pairs of
gradient and aspect realization files (for each given p
value) are then taken in turn and used to calculate the
corresponding incidence angle cosine file, which is ap-
plied to the original TM radiance file (L) used for the
analysis. The process results in the creation of a family
of realized Ly files whose outputs can then be analyzed.
The entire process was automated by using a macro
command script and applied using the ARC GRID soft-
ware (ESRI 1992).

The adopted procedure resulted in a set of 10 realized
Ly files for each of the p values 0.0, 0.05, 0.10, 0.15, 0.20,
0.21,0.22, 0.23, 0.24 and 0.245. For the purpose of analy-
sis, the 96,016 grid cells in every realized file were sub-
tracted from their corresponding cells in the original Ly
file to provide a “difference” file. This difference repre-
sents the amount by which the final Ly value might be
expected to vary under terms of uncertainty due to vari-
ation in the elevations of the original DEM and the sub-
sequent series of spatial operations that were performed
on the data.

The mean and standard deviations of each set of 10
difference files were then calculated for the range of p
values applied. The results are shown in Figures 5a and
5b, with a gradual increase noticeable in the mean and
standard deviation of the differences as p varies from 0
to 0.20, followed by sudden decreases as p approaches
0.25. Figures 5a and 5b therefore represent the results of
96,016 x 10 x 10 (or 9,601,600) individual calculations.

At this stage, analysis of the results shows that the
average greatest difference that might be expected in Ly
values is about 2.5 units with a standard deviation of




FIGURE4. Comparing the traditional technique of creating the Ly file with the proposed method which provides for

assessment of Ly; uncertainty.
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approximately 13 units. These extremes occur around
p = 0.20. However while such global statistics are useful
in their own right, they say nothing about the spatial
variation of the differences and, accordingly, further
analysis was made of the realizations made at p = 0.20.
Taking the 10 realized Ly difference files at p = 0.20,a
composite file was calculated and displayed such that
cells with an Ly difference within +2 standard devia-
tions of the overall mean for the file were shaded as

gray color, while cells with an Ly difference greater than
+2 standard deviations were shaded as white and black
color respectively. The result is shown in Figure 6a
where it can be seen that the white and black cells, rep-
resenting outlying values or those most susceptible to
the spatial operations applied, tend to occur on west-
facing slopes of north-south ridgelines when compared
with a hill-shaded view of the test site DEM with con-
tours overlaid at an interval of 100m (Figure 6c).
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FIGURE5a. Showing the mean difference in Ly for each
set of 10 realized files plotted against variation in the spa-
tial auto correlation parameter (p).
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The file used in Figure 6a was then hill-shaded from
the northeast to communicate both the size and spatial
variation of the differences, and cell values beyond the
+2 standard deviation threshold show as a highly dis-
turbed pattern while cells with differences within the
threshold display as relatively smooth gray color (Fig-
ure 6b). One site in particular, in the top northeast cor-
ner of the image contains a significant Ly difference wit-

FIGURE 6a. Showing the mean Ly difference file after 10
realizations at p = 0.20, with cells below and above the - 2
standard deviation threshold shown as black and white
color respectively.

FIGURE 5b. Showing the standard deviation of the dif-
ferences for the same sets of 10 files.
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nessed by its long shadow extending to the southwest.

Given that this file represents the mean difference value

occurring after 10 independent realizations, there is the

suggestion of either an anomalous DEM elevation or

TM radiance value present which warrants closer in-

spection of the original data.

Having illustrated the spatial variation in the uncer-

_ tainty of the Ly values, further explanation was sought

FIGURE 6b. Showing a hill-shaded view of the Ly; dif-
ference file used in Figure 6a, with cells outside the * 2
standard deviation threshold showing as disturbed areas
(note the anomaly in the upper right comer).
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FIGURE6¢c. Showing a hill-shaded view of the DEM by
comparison with 100m contours overlaid.

as to the reason for the apparent correlation between
significant differences in Ly and west-facing slopes. This
can be explained by the location of the sun at the time of
the TM image capture, which was at an azimuth of 117°
and a zenith angle of 36° (during the middle of the
northern hemisphere summer). From this position, the
pixels in shadow are clearly affected the most, which
confirms the problems encountered when working with
pixels in diffused light. It was for this reason that cells
found to be in shadow (and thus having an incidence
angle cosine < 0) were not removed from the realization
process, but instead deliberately retained to demon-
strate any likely susceptibility to variation. Thus, the

- masking of such pixels during traditional analysis may
be considered a valid approach to the problem.

At the same time, it was seen that for the remainder
of the image the greatest mean difference in Ly that
might be expected is about 2.5 units with a standard de-
viation of some 13 units. It is left to the user of the data
to decide whether this variation is acceptable for the
task at hand, and this assessment of product quality (or
fitness for use) forms part of the management approach
which needs to be adopted in such cases. If the variation
is acceptable, then the methodology proposed has con-
firmed that the particular combination of DEM and TM
imagery; the algorithms for gradient, aspect and inci-

dence angle cosine; and the model for terrain correction
of the Ly value are suitable for the purpose intended.

On the other hand, if these differences are unaccept-
able then uncertainty reduction methods will need to be
employed, such as:

¢ choosing more accurate DEM data;

* selecting alternative algorithms and models;

¢ taking certain areas shown to be most susceptible to the ef-
fects of uncertainty out of the analysis; or

¢ employing TM imagery from other epochs.

To this end, the realization process may be repeated
using different combinations of data, algorithms, and
models to determine which one produces the least un-
certainty in the final product. At the time of writing,
work is already underway using external funding to de-
velop a simple software toolbox which will embody the
procedures described, in order that users may more eas-
ily automate the modeling and analysis procedures ap-
plied in this research.

Potential Applications of the Model

The potential applications of the model lie in four areas.
First, the realization process may be used to highlight
areas of a map that are susceptible to changes in para-
meter values. For instance, Hunter and Goodchild
(1995b) demonstrated that the calculation of slope as-
pect from a DEM was particularly susceptible to varia-
tion in terrain elevation in relatively flat regions, while
large hillside slopes remained relatively stable. While
such a conclusion is already fairly well established, this
may not always be necessarily so; where complex
process models are applied, their effects may still be
largely unknown. In other applications, the observed
differences might be used as input to subsequent sensi-
tivity analysis to understand how changes in parame-
ters impact upon the decision-making process, such as
in land use suitability and capability studies.

Secondly, the technique can be useful in cases where
differences per se are not as important as assessing the
likelihood of a cell’'s membership of a particular class.
An example of this can be found in viewshed computa-
tions where cells are computed as being either seen or
not seen from a viewing point, and similar requirements
may be made in calculating the extent of drainage
basins. Sets of realizations taken at different p values can
be added to compute a “score” for each cell (together
with a mean and standard deviation), which in turn
may be used to calculate the probability of a cell satisfy-
ing the criteria associated with the operation, thereby
overcoming the “in or out” Boolean responses normally
associated with spatial databases. Users can thus nomi-
nate a confidence level to be met when assessing the re-
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sults of the process (for example, ‘cells must have a 90
percent probability of being seen’).

Another example occurs in soil classification which is
often dependent in part upon slope-gradient estimates,
in which realizations of a soil map can be produced
based upon previous realizations of the slope-gradient
map, enabling users to select cells on the basis of having
a given probability of belonging to a defined gradient
range. At the same time, cell class counts (and therefore
area estimates) may be made for a set of realized maps
with the mean and standard deviation of the area being
reported to users.

Thirdly, a user might want to display several realiza-
tions of a map to understand the degree of variation as-
sociated with the processes involved. For example, in-
stead of interpolating contours from a DEM just once,
several realizations might be made to assess not only
the impact of elevation uncertainty on the process, but
also the variation due to the interpolation procedure it-
self. This could also be applied to other raster-to-vector
conversion procedures when class polygons or linear
features such as stream patterns are required, thus pro-
ducing a family of possible boundaries or linear fea-

tures.

Finally, simulations can be undertaken to study the
effect on map products where competing data sets, error
estimates, algorithms, and process models are available.
This ‘reverse engineering’ approach might also be ap-
plied by users who, having already studied several pos-
sible realizations of a desired map, and having identi-
fied areas exhibiting levels of uncertainty considered
unacceptable, wish to see how different uncertainty re-
duction options (for example, recollecting data at a
higher accuracy) would affect the final outcome—before
returning to the field site or purchasing alternative data
sets.

Conclusions

In this paper the authors have presented a methodology
that allows uncertainty to be reported for certain types
of spatial database products. The work recognizes the
critical need for tools to be developed to assist users in
improving their understanding of the quality of the out-
puts from their systems. The methodology has been ap-
plied to communicate the uncertainty associated with
using digital elevation models to correct remotely
sensed imagery for terrain effects when assessing
mountainous areas burnt by fire in central Portugal. The
results of the study show that given the particular com-
bination of DEM data, algorithms, models and imagery
employed, the normalized radiance values of pixels in
some locations are highly susceptible to variation in the
input parameters. As such, the procedures that have
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been applied permit users to study the uncertainty asso-
ciated with the analysis, identify where its effects are
most severe, study its impacts on the final spatial data-
base product derived, and offer the opportunity for al-
ternative data and algorithms to be tested to determine
which combinations yield uncertainty levels that are ac-
ceptable for the task at hand. We believe the result will
be an analysis that is better informed with respect to the
effects of uncertainty. On the other hand, we cannot
avoid the need to involve the user in any ultimate deci-
sion about whether the analysis meets its objectives—in
that sense the technique remains partially subjective.

While the basis of the approach lies in statistical error
modeling, the results can be visualized readily within a
GIS, and the paper has demonstrated techniques that
can be employed by users lacking any great depth of
statistical knowledge or training. In this sense, the vi-
sual, intuitive nature of GIS analysis and modeling
holds the key to novel, practical approaches to the man-
agement of uncertainty in spatial data. The methodol-
ogy outlined in Figure 1 can be implemented in many
existing GISs using scripting or macro languages, hid-
ing most of the computation from the user, and exploit-
ing visual techniques for eliciting the key information
needed to implement the model.

On the other hand, the basis of the technique is com-
plex and it will probably never be possible to package
them in a form which is fully understandable by all GIS
users, given the diversity of backgrounds common in
this field. For that reason we suggest that the toolbox
containing these techmques be operated by the analysts
in an organization who can in turn feed the results to
users. Readers interested in obtaining the toolbox and
an associated tutorial manual should contact the first
author.
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