Gary J. Hunter, Michael F. Goodchild

Modeling the Uncertainty of Vector Data in Geographic
Information Systems

Recently, the authors investigated the uncertainty associated with grid- cell data in Geographic
Information Systems (GIS), through the use of a model which permits a population of distorted (but
equally probable) versions of the same map to be generated and analysed. While this model is easily
applied to data such as Digital Elevation Models to determine the uncertainty associated with the
products derived from them, it was not applicable to vector data. However, the model has now been
enhanced to provide for stochastic distortion of vector data through the creation of separate horizontal
positional error fields in the x and y directions, which are then overlaid with the vector data to apply
coordinate shifts by which new versions of point, line and polygon data are created. By perturbing the
data to generate distorted versions of it, the likely uncertainty of vector data in both position and
attribute may be assessed in GIS outputs. This paper explains the background to the model and discusses
its implementation and potential applications.

1. Introduction

Geographic Information Systems (GIS) are now being widely implemented in the public sector for
applications such as facilities management, land administration, resource assessment, and emergency
service command and control, while the private sector is employing them for uses such as demographic
analysis, marketing and retail site selection. To emphasise the importance of these systems, an executive
order was issued in April 1994 by President Clinton establishing the National Spatial Data Infrastructure
in recognition of the economic, environmental and social importance of providing low cost, accurate,
and easily obtainable spatial data to all sectors of the community. Other countries, such as Australia,
have followed its progress with keen interest and are also considering adoption of similar programs.
While the issues of cost and easy access to data have been generally overcome through government
policies and technological advances, the accuracy issue is still causing considerable problems within the

industry.

From an historical viewpoint, as users became more experienced with GIS during the 1970s and 80s,
there gradually arose a critical awareness of the fact that in many cases they did not know how accurate
their system outputs were and whether or not they actually satisfied their needs. This predicament has
been caused not only by the false sense of security that computer technology sometimes induces, but
also by the lack of theoretical models of spatial data error. The situation has now reached the point
where, for government agencies which base their regulatory decisions upon spatial information or in
cases where they or private companies sell data for commercial return, there is a growing international
trend towards litigation by aggrieved parties seeking compensation on the grounds that decisions are
wrongly based due to data inaccuracies, or that they have suffered damage through unknowingly
purchasing and using data which had insufficient accuracy to meet their requirements. Software
developers and vendors may also be affected since the algorithms they encode in their products can have
the potential to induce additional error. Thus, the accuracy issue is of serious concern to all sectors of the
geographic information industry.




In recent years, most international spatial data transfer standards have adopted mandatory data quality
reporting provisions (Moellering, 1991), which will help address the problem by ensuring that data
providers truthfully label their products in such a way that users can assess their fitness for use.
However, while this approach has merit there is a presumption that the necessary tools for assessing and
communicating spatial data error already exist. Unfortunately, this is not the case and a considerable
amount of research still remains to be conducted. Goodchild (1993), for instance, suggests there are only
half a dozen commonly accepted models of spatial data error, and Hunter and Beard (1992) have
identified at least 150 potential error sources of which we have little or no current understanding.

To help deal with this problem, the authors have developed a model of uncertainty for dealing with
spatial data, however before discussing it some explanatory remarks are required regarding the use of
the term ’uncertainty’. In the context of geographic data, it is argued there is a clear distinction between
’error’ and ’uncertainty’, since the former implies that some degree of knowledge has been attained
about differences (and the reasons for their occurrence) between the results or observations and the truth
to which they pertain. On the other hand, uncertainty’ conveys the fact that it is the lack of such
knowledge which is responsible for hesitancy in accepting those same results or observations without
caution, and often the term ’error’ is used when it would be more appropriate to use ’uncertainty’.

The uncertainty model that has evolved can be defined as a stochastic process capable of generating a
population of distorted versions of the same reality (such as a map), with each version being a sample
from the same population. The traditional Gaussian model (where the mean of the population estimates
the true value and the standard deviation is a measure of variation in the observations) is one attempt at
describing error, but it is global in nature and says nothing about the processes by which error may have
accumulated.

The model adopted in this research is viewed as an advance on the Gaussian model since it not only has
the ability to show local variation in uncertainty, but also has the advantage of being able to display the
effects of error propagation resulting from the various algorithms and process models that have been
applied D even though we do not possess propagation models per se. This latter point is particularly
important to users, since many software vendors do not divulge the algorithms used in their packages for
commercial reasons D which prevents formal mathematical error propagation analysis from being
undertaken. By studying different versions of the products created by the model, it is possible to see how
differences in output are affected by variations in input. The model was first designed by Goodchild et
al. (1992), and its use in assessing the uncertainty of products derived from grid cell data has been
reported in Hunter and Goodchild (1994) and Hunter et al. (1994). However, a limitation of that initial
version of the model was its inability to represent uncertainty in vector data, and this paper describes an
enhanced version of the model which is capable of producing distorted versions of point, line and
polygon data. The paper is structured such that the concepts underlying the model are first introduced,
followed by the issues affecting its implementation and the variety of ways in which it might be applied
in practice.

2. Description of the Model

Extending the grid cell model to cater for uncertainty in vector data involves the creation of two
separate, normally distributed, random error grids in the x and y coordinate directions. When combined,
these grids provide the two components of a set of positional error vectors regularly distributed
throughout the region of the data set to be perturbed. The assumptions made by the authors are (1) that
the error has a circular normal distribution and (2) that its x and y components are independent. The




grids are generated with a mean and standard deviation equal to the producer’s estimate for positional
error in the data set to be perturbed. These error estimates, for example, might come from the residuals
at control points reported during digitiser setup, or from existing data quality statements such as those
that often accompany topographic and natural resource data.
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Figure 1. The model of vector uncertainty uses error grids in the x and y directions to produce a distorted
version of the data set.

By overlaying the two grids with the data set to be distorted (containing either point, line or polygon
features), x and y positional shifts can be applied to the coordinates of each point in the data set to create
a new, but equally probable, version of it (Figure 1). Thus, the probabilistic coordinates of a point are
considered to be (x + error, y + error). With the distorted version of the data, the user then applies the
normal processes required to create the final product, and by using a number of these distorted data sets
the uncertainty residing in the end product is able to be assessed. Alternatively, several different data
sets may be independently distorted prior to being combined to assess the output uncertainty. While the
model does require an initial error estimate for creation of the two grids, it is the resultant uncertainty
arising from the use of perturbed data (in conjunction with the spatial operations that are subsequently
applied) which is under investigation, and hence its label as an uncertainty’ model.

3. Implementation Issues
3.1 Generation of the Error Grids

The two error grids are created independently, by populating them with normally distributed values
having a mean and standard deviation equivalent to the producer’s horizontal error estimate for the data
set being perturbed. Usually, the mean equals zero and the standard deviation is the same in the x and y
directions. In some GIS packages provision exists for creating normally distributed grids (such as the
NORMAL function in the Arc Grid software), however it will later be shown that some degree of
autocorrelation must be introduced to the process, so that differences in shifts between neighbouring
points in the x and y grids are constrained to avoid topological inconsistencies arising in the distorted
data. ‘

Accordingly, the procedure described previously in Hunter and Goodchild (1994) is used to create the
grids, which contain a user-defined number of points and a given measure of autocorrelation (rho) in the
range 0 < rho < 0.25. The two grids, which are initially assigned zero as their coordinate origin and have
unit separation distance between points, are then georeferenced via a 2-dimensional coordinate
transformation to achieve the required separation distance and ensure they completely overlap the data
set to be perturbed (for example, by using the SHIFT function in Arc Grid which uses the new lower left
coordinates of the grid and required point spacing as its arguments).




3.2 Choice of Separation Distance Between Points in the Error Grids

The choice of separation distance between points in the error grids is arbitrary, however if it is larger
than either the x or y distance components of the minimum distance between any two neighbouring
points in the data set to be distorted (regardless of whether they form point, line or polygon features),
then the local positional shifts applied to those points will be equal and no longer independent, causing
unwanted local autocorrelation to be introduced to the data (Figure 2). Thus, the point spacing in the
error grids should be at least as small as the minimum x or y distance between the observed features,
although spurious data should obviously be discounted from this estimate.

As a ’rule of thumb’ it is suggested that the spacing be equal to or less than 0.5mm at the scale of the
map from which the data originated, which is a common estimate of relative positional accuracy. This
translates into 0.5m at a scale of 1:1,000, 5m at 1:10,000, and 50m at 1:100,000. Where little is known
about the data set’s origin, users should select a separation distance smaller than they would care to
consider D given the nature of the data and the application concerned. For example, in vegetation
boundary data it might be considered that individual boundary segments or polygon widths less than 5m,
while not necessarily being spurious, will not practically affect the outcome of the analysis to be
conducted. Thus, selection of an error grid separation of 5m is reasonable even though the positional
shifts applied to features which are less than this distance apart will be similar in magnitude and
therefore highly correlated.
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Figure 2. If the spacing (d) between points in the error grids is greater than the smallest feature lengths,
then unwanted local correlation between shifts may occur in small features.

3.3 Preserving Topological Integrity Between Distorted Features

To preserve topological integrity between features following distortion, some measure of autocorrelation
must be introduced to control the magnitude of positional shifts between neighbouring points in the error
grids. If this does not happen, there is a strong likelihood that neighbouring points in the observed data
will be *swapped’ or transposed in position P causing ’rips’ in the feature structure (Figure 3a). This
could also happen with points on either side of a long, narrow polygon feature causing a ’figure 8’
transposition to take place and new polygons being formed. Intuitively this should not occur and is
considered unacceptable.

To avoid this problem, autocorrelation is introduced during formation of the error grids as mentioned
earlier. In this process, the grids are initially populated with random, normally distributed values
centered around the nominated mean and standard deviation. For example, if the mean is zero and the




standard deviation is 10m, then the properties of the normal distribution are such that approximately
68% of points will be assigned values in the range of 0 +10m, a further 27% will have values between
-10m to -20m and +10m to +20m, and the remaining 5% will lie outside of 0 £20m. Then, by an
iterative process the values of the original shifts assigned to each grid point are adjusted until the
specified level of autocorrelation is achieved, according to the value of the parameter (r) that has been
requested.

At this time, it is considered that the rho value required to prevent "rips’ from occurring will depend on
the error grid spacing and the standard deviation of the normal distribution being applied, however this
has not yet been tested. Instead, a ’trial and error’ approach can be adopted whereby rho is increased for
each new set of x and y grids until no ’rips’ exist, by testing each consecutive pair of points (in
horizontal or row sequence for the x grid, and vertical or column sequence for the y grid) to determine
whether the absolute value of the difference between their shifts is greater than the grid separation
distance (Figure 3b). If so, then a ’rip’ is possible at that location but suitably autocorrelated grids will
overcome the problem (Figure 3c).

In some cases, however, transposition may occur between features that are not linked to each other (as
with contours) and autocorrelation will not prevent damage to the topological integrity of the data after
distortion. Thus, use of the model for contour perturbation, for example, is an ill- posed problem. On the
other hand, there is no reason why the model could not be applied to provide z shifts to irregularly
spaced point elevation data prior to interpolating contours or forming triangular facets.
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Figure 3. In (a), uncontrolled shifts between neighbouring error grid points can cause unacceptable ’rips’
or transposition of features in the data set. In (b), ’rips’ occur when the difference between neighbouring
grid points is larger than their separation distance (d). In (c), autocorrelation is used to ensure 'rips’ do
not occur.

Initially it would appear that autocorrelation between error grid points is not required when creating the
z shift grid, since point elevations are normally stored as attached attribute values and topological
relationships are not constructed for point data. In addition, the z shift vectors would lie perpendicular to
the plane of the error grid, unlike the x and y shift vectors which are coplanar, and the equivalent of
"rips’ would not be expected to occur as long as the spacing of the error grids is less than the smallest
distance between observed features and autocorrelation has been already applied to the x and y grids.

However, the authors’ previous experience in perturbing elevations in DEMs has shown that
autocorrelation is still required to prevent wild fluctuations occurring in the z shifts applied to
neighbouring points if the distortions possess complete spatial independence (Hunter and Goodchild,
1994). For example, in a DEM with cells spaced 30m apart and z shifts being applied with a standard
deviation of 20m, it can be quite common to observe one cell’s elevation increase by 10-20m while its




neighbour’s decreases by a similar amount. Thus, two cells which might have originally had similar
elevations now have a 20-40m difference in their heights even though they are only 30m apart. Qur
instinct and knowledge of spatial data tells us that such completely random variation is abnormal and
should be avoided.

While some autocorrelation is required to achieve z shifts which appear ’natural’ between neighbours, it
cannot be automatically assumed to be equal to the amount needed for the x and y grids, since the
circumstances in which it is applied are very different. In the case of the z grid, there is no exact method
for determining the correct value of the parameter rho (such as, *vary rho until there are no more rips’),
and the authors have found that a series of z grids with rho values varying throughout the range 0 < rho
< 0.25 needs to be created and applied to the point feature data set. By calculating, for each distorted
data set, the mean difference between its elevations and the original observations, a graphical plot of
elevation difference versus rho usually discloses a transition point in the curve that marks the point at
which the z shifts cease being effectively constrained. This value of rho is then selected for
autocorrelation of the z shift grids.

3.4 Calculation of Positional Shifts for Data Points not Coinciding with the Grids

Inevitably, it is expected that few if any points in the observed data set will coincide with the error grid,
and a technique is required for calculating x and y shifts based on the values of neighbours in the error
grid. Accordingly, a simple inverse distance weighting procedure is proposed in which the x and y shifts
assigned to each data point are calculated as the weighted averages of the respective shifts of the four
neighbouring grid points P with the weights being inversely proportional to the distance of the data
point from the grid points.

In Figure 4, the shifts at each grid point are represented by delta x and delta y, and D is the distance to
the data point to be distorted. Inverse distance weighting ensures that grid points closer to the data point
have greater effect than those that are further away. For computational efficiency, a minimum distance
threshold should be set so that if an observed point is almost coincident with a grid point, then the shifts
at that point are automatically adopted and the inverse distance weighing computation is not executed.
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Figure 4. The x and y shifts for a point not coinciding with the error grid are calculated based on the
weighted average of the four surrounding values, with closer grid points having greater weight than
those further away.

3.5 Transfer of Positional Shifts to the Data Points

The final implementation issue concerns the means by which the positional shifts are transferred to the



data points. At this stage, the likely solution is to take each point in the data set to be distorted and label
its position as the ’From’ coordinates, to which the x and y shifts are added to give the "To’ coordinates.
Where topology is present, it will need to be reconstructed after distortion. At this time, the transfer
procedure has not been implemented and testing will be required to develop an efficient algorithm.

3.6 Summary of the Model’s Operation

Finally, the following steps summarise the considerations that have been discussed with respect to
implementing the model in practice.

Step 1:
Determine the separation distance required for the error grids and the coordinate extent that the grids
will need to cover. The number of points needed in the grids will depend on these values.

Step 2:
Generate two error grids, initially with a value of rho = 0.

Step 3:
Test the grids for 'rips’ and repeat Step 2 with increasing values of rho until there are no more ’rips’
remaining in either grid.

Step 4:
Adjust the autocorrelated grids to give the required spacing between points and transform their
coordinate origins to agree with the data set being perturbed.

Step 5:

Taking each point in the observed data set in turn, calculate the positional shifts in x and y to be applied
based on the neighbouring error grid values (with a minimum distance threshold being applied to detect
data points lying in close vicinity to error grid points).

Step 6:
Update the coordinates of each point using the shifts calculated in Step 5.

Step 7:
Reconstruct the topology of the distorted grid, if applicable.

4, Potential Applications

The potential applications of the model are considered to lie in several areas. Firstly, from an
educational perspective a family of distorted but equally probable versions of the same data set could be
used to illustrate the uncertainty that should be expected when interpreting the data. This could be a
useful approach adopted by data producers in explaining the meaning of their error statistics to potential
users who may not necessarily understand the statistics provided b especially now that the use of GIS
has become so diverse and there are new users without sound analytical backgrounds in this field. These
visual statements could form part of the data quality reports (Figure 5).

For operational purposes, the model could be widely used to determine the uncertainty of attributes
derived from area and length estimates due to positional uncertainty in the original data. For instance,




different versions of a road centerline database could be created to test the uncertainty in travel time and
routing routines by running the same problem with perturbed data sets to assess which solutions have the
best overall results. In other applications, more than one data set may need to be perturbed. For example,
if the problem is to determine the economic effects of flooding based on different land uses, property
values, soil types and flood zone ratings, then each vector data set could be perturbed according to its
own error estimate before being overlaid to identify land which is at highest risk of flooding and the
potential monetary loss. By running the model a number of times, the resultant variation in the financial
amounts involved can be determined under conditions of uncertainty.
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Figure 5. An educational application of the model would be for data producers to include visual samples
of perturbed data sets in their data quality reports to help convey the meaning of their accuracy statistics.

The model may also be useful as a means of densifying or ungeneralising’ data, if we assume that for
certain types of data not only may the endpoints of lines be distorted, but also the positions of
intermediate points along them. This approach would be unsuitable for perturbing land parcel
boundaries, for instance, which are defined by their endpoints, however for data subject to natural
variation it may provide a more realistic method of modeling their boundaries. This could be achieved
by first placing additional vertices along each line segment (the usual means of densifying lines), and
then applying the model to provide shifts at all node and vertex coordinates in the data (Figure 6).
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Figure 6. In (a), only the endpoints of lines are distorted, whereas in (b) intermediate points along a line
are independently distorted to provide a means of densifying the feature.

5. Conclusions

In this paper the authors present a model for handling uncertainty in vector data which is an
enhancement of their earlier work that dealt with grid cell data only. The model permits different, but
equally probable, versions of point, line and polygon data sets to be created via the introduction of
distortion grids in the x and y directions, which in turn are used to apply coordinate shifts to every
feature in the data set/s to be perturbed. The paper discusses the underling concepts, the implementation
issues affecting the model, and the ways in which it may be applied in practice. In particular, it may be
used to show positional uncertainty effects alone, or else their subsequent effect upon derived attributes




based on area and length calculations. It might also prove useful as a non-linear means of randomly
densifying line and polygon features. While the model does not purport to be able to deal with all cases
of uncertainty in vector data, such as the perturbation of contour data in which there is the danger of
contours crossing each other after distortion, the authors believe it nevertheless provides a useful
advance on the current body of knowledge and techniques in this field.
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For Further Information

Persons interested in obtaining additional information about the model of vector uncertainty should
contact the first author at his address to receive copies of further papers arising from the research. For
the grid cell version of the model, a free tutorial is already available which explains its use and
application, and includes software for generating the autocorrelated grids and for combining these with
other grid cell data sets. Arc/Info AML code is supplied to run the model.
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