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Abstract. GIS and remote sensing have emerged as distinct
spatial data handling technologies with their own methods of
data representation and analysis. Combining them as tools to
support vegetation analysis and modeling thus presents a
number of challenges. The paper begins by describing the
major data sources, applications, and software characteristics
of each technology, and then compares them within a consist-
ent terminological framework that emphasizes the digital rep-
resentation of continuously varying spatial data. Because the
spatial continuum can be discretized in many different ways,
and because each can only approximate the truth, both GIS
and remote sensing are subject to error and uncertainty. Inte-
gration, and subsequent analysis and modeling. require that
explicit attention be directed to uncertainty. The paper reviews
the models of error that have been developed in recent years
for spatial data and examines their use in the interface between
GIS and remote sensing. The paper looks at the functional
requirements of modeling, and includes discussion of error
propagation.

Keywords: Error model; Error propagation; GIS; Spatial data;
Uncertainty.

Abbreviation: GIS = Geographical Information Systems;
NDVI = Normalized Difference Vegetation Index.

Introduction

A variety of technologies for collecting, handling,
and analyzing spatial data have emerged in the past
three decades. If attention is limited to those that deal
strictly with geographical data, rather than the more
generally defined spatial data, then the list would have
to include GPS, the global positioning system based on
analysis of signals from a constellation of orbiting satel-
lites; electronic surveying technology as typified by the
modemn ‘total station’; remote sensing; and geographic
information systems (GIS). Although all involve the use
of sophisticated electronic technology, the last two raise
interlocking issues that go well beyond those of the
technology per se, particularly for scientific applica-
tions in areas such as vegetation science, and are the
focus of this paper.

Although remote sensing can be broadly defined as
measurement at a distance, for most purposes it implies
the imaging of the surface of the Earth from an airborne
or space-borne sensor, using some appropriate part of
the electromagnetic spectrum. The technical issues of
sensor design, orbital corrections. cloud, and noise re-
duction are not of concern here; for the purposes of this
paper, it is assumed that imaging systems produce
samplings of two-dimensional univariate or multivari-
ate fields of measured spectral response in one or more
known parts of the electromagnetic spectrum. Remote
sensing software is designed to process this raw data
into forms that are useful for a range of purposes, from
simple mapping and monitoring to management and
modeling.

A geographic information system is a much broader
and more nebulous concept - a system for the input,
storage, manipulation, and output of geographically ref-
erenced data. Although there is wide acceptance of this
general definition, the actual specification of a GIS can
vary widely depending on the assumptions that its de-
signers are willing to make about its uses. For example,
a GIS designed to process only data derived by remote
sensing would be very different from one designed to
process only data derived from maps. This paper will
not attempt to provide a general introduction to GIS,
since the topic is already addressed comprehensively in
many texts (for general overviews see Burrough 1986;
Maguire et al. 1991; Star & Estes 1991). Goodchild et
al. (1993) include several chapters on the use of GIS for
ecological modeling, and Haines-Young et al. (1993)
discuss applications of GIS in landscape ecology.

The purpose of this paper is to develop a general
conceptual framework for geographical data, and veg-
etation mapping in particular, and to embed both GIS
and remote sensing within it, thus providing a theoreti-
cal and methodological basis for integration. Because
both technologies create approximate representations of
geographical distributions, issues of error and uncer-
tainty are critical to successful integration. Each field
has developed its own, apparently incompatible. ap-
proach to error description, and the paper develops a
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general approach for overcoming this significant im-
pediment within the general conceptual framework.
Throughout the paper, the examples and illustrations are
drawn from the area of vegetation mapping.

Geographic data models

The nature of geographical data

At the most fundamental level, geographical data
can be defined as a collection of facts about places. The
atom of spatial data is the tuple <x,v.z>, where x and y
define a place, and ; some fact about the place, such as
vegetation cover class. A convenient way to define the
difference between spatial and geographical data is to
insist that for geographical data, the coordinates (x,y) be
defined by some system of measurement on the Earth,
such as latitude/longitude, or the UTM (Universal Trans-
verse Mercator) coordinate system.

Current measurement technologies place fairly coarse
limits on one’s ability to determine geographical posi-
tion accurately. A hand-held GPS receiver, for example,
can determine absolute position on the Earth to perhaps
1000 m?, or approximately the area of one arc-second of
latitude and longitude, outside the polar regions. The
problems of approximating the complex shape of the
Earth with simple mathematical functions also place
limits on absolute positioning. On the other hand, it is
possible to establish relative positions with millimeter
accuracy, even over distances of hundreds of kilometers,
using modern surveying techniques.

For many types of geographical facts, it is appropri-
ate to conceive of a measurement - being made at a
point, or infinitely small area, even though the accuracy
of that point’s location may be limited. For example,
ground elevation can be measured at a point. as can air
temperature, rainfall, or atmospheric pressure. Although
arain gauge will average rainfall over a discrete radius,
that radius will be much less than the positional error in
the location of the rain gauge, and irrelevant in any
likely analysis.

For other types of geographical facts, the definition
of the value at a point requires an observation over some
significant radius around the point. Vegetation cover
classes, for example, can only be defined over discrete
areas that substantially exceed the area covered by any
one individual organism. This spatial resolution of the
fact should not be confused with the positional accuracy
of the point, or with measures of the size of the study
area. In a typical example, the positional accuracy of the
observation might be 1000 m* using GPS, while the
spatial resolution of vegetation cover class might be
1 ha (10 000 m?), implying that it is necessary to ob-

serve an area of | ha to determine the cover class
recorded at its central point. Unfortunately, neither meas-
ure is explicitly defined in much vegetation mapping
practice.

In any discussion of positional accuracy, it is com-
mon to mix units - some parameters may be expressed as
areas, some as radii, and some as diameters. To avoid
confusion, area measures will be used consistently
throughout the paper. Thus, the size of a pixel, mini-
mum area of a polygon, and positional accuracy of a
point will all be expressed in area measure. In the case of
positional accuracy of a point, the measure will express
the area of a circle centered on the point within which
the true location is assumed to lie with some determined
probability.

In this conceptual framework, it is possible to deter-
mine the value of any fact : at any location (x.y). For
some types of geographical data, such as ground eleva-
tion, the value at any location is potentially unique. and
thus an infinite number of tuples would be required to
capture geographical variation over a finite area com-
pletely. In practice. measurement systems determine
values only at a discrete number of locations, or adopt
other strategies to limit the volume of data that must be
handled.

Fields and entities

Two distinct mental models underlie the various
strategies that have been devised for the representation
of geographical variation (Goodchild 1992). In the field
view, geographical variation can be conceived as a set
of distinct variables {z,. 2, .... 2,}, each with a precise
definition that allows it to be measured at any point
(x,y). Mathematically, geography is a multivariate or
vector field. Some variables may be measured on con-
tinuous (interval or ratio) scales, while others, such as
vegetation class. may be discrete (nominal or ordinal).
Because all variables show some degree of spatial de-
pendence or autocorrelation, continuous variables may
be differentiable, although ridge lines, cliffs, and faults
are obvious sources of exceptions. Similarly, the values
of discrete variables may be constant over substantial
contiguous areas.

While the field view may be appropriate for rigorous
definition and precise measurement, it is generally inad-
equate for interpretation and many forms of modeling,
where it is replaced by the entity view (the terms field
and entity have many precise and imprecise synonyms
in the geographical data handling field - entity is often
replaced by feature or object). In this mental model,
geography is conceived as an empty space littered with
various kinds of objects, with associated characteristics.
For example, interpretation of a raw field of ground
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Fig. 1. Digital representations of (a) points. (b) lines as polylines, and (c) areas as polygons.

elevations would yield such topographic objects as moun-
tain, valley, watershed. ridge. pass. or saddle. Interpre-
tation of a raw field of atmospheric pressure might yield
high, low, trough, or front. Many models address the
behavior of these discrete entities. rather than the con-
tinuous fields from which they may have been derived.

In some cases, the derivation of entities may be well-
defined. However. not all maxima in a continuous field
of ground elevation are significant enough to be called
summits - the rule base of interpretation is likely to be
complex. Definitions of entities often fail to give them
precise footprints (the summit of a mountain is often
better defined than its geographic limits; there are no
precisely defined limits to the Atlantic Ocean) and enti-
ties of the same class may overlap (the Gulf of Mexico
may be considered part of the Atlantic Ocean) or have
hierarchical relationships with each other.

The field and entity views are mental models of
geographical variation that allow the mind to compre-
hend what is potentially an infinitely complex world. In
everyday life the entity view is dominant, and reflected
in the construction of topographic maps, or the giving of
navigational directions. The State of Minnesota is de-
scribed as having 10 000 lakes, not a continuous field of
‘lakeness’ that can be evaluated objectively at any point
on the surface of the state. In science, on the other hand,
both views are in common use; atmospheric pressure is
captured and recorded by sampling a field, and the field
view is reflected in the finite difference simulation
models used to predict future conditions, but weather
forecasts provide the public with predictions of the
behavior of highs, lows, and fronts as discrete entities

moving in an otherwise empty space. In vegetation
mapping, the field view is clearly dominant, vegetation

_being conceived as having some unique class or descrip-

tion at every point in the plane. On the other hand,
modeling in vegetation science may be more concerned
with the behavior of discrete objects distributed in an
otherwise empty space, and thus more consistent with
the entity view.

Digital representation

Although fields and entities are useful mental mod-
els of real geography, they both contain a potentially
infinite amount of information. The digital representa-
tion of entities is relatively straightforward (Fig. 1). A
finite set of point entities (Fig. 1a) can be represented
with no information loss as a series of tuples <x,y,z>,
and the numerical precision of a digital representation
normally exceeds both the positional accuracy of the
coordinates and the measurement accuracy of z. A line
is conventionally represented as a polyline (Fig. 1b), an
ordered set of points assumed to be connected by straight
line segments. Although accuracy can be improved by
increasing the density of points, the polyline convention
has two significant disadvantages: the length of a polyline
is normally less than the curve it approximates; and it is
difficult to estimate tangents or perpendiculars from a
polyline representation. Area entities are convention-
ally represented as polygons (Fig. lc), with similar
problems regarding the measurement of perimeters, per-
pendiculars, and tangents.

The representation of fields offers more alternatives,




618 Goodchild, M.F.

AlAlAIB{D|DID
AlAIBIB|D|DID
BiB|B|B|C|C|D
A|B/B|B|C|CiD
A|B|B|C|C|C|D

:_58 D
x c

(b)

Fig. 2. The (a) raster and (b) polygon data models for a
nominal-scaled field such as vegetation class. Note the largely
independent approximations inherent in each representation.

and at the same time raises more problems. Six methods
are in common use (Goodchild 1992):

- randomly located sample points;

- sample points in a regular rectangular array;

- a regular rectangular array of cells, with some
aggregate value of the field recorded for each cell [the
‘raster’ model in subsequent discussion (see Fig. 2a)];

- a polyline representation of selected isolines (con-
tours);

- an irregular array of triangles, with the value of the
field recorded at every vertex, and the field assumed to
vary linearly within each triangle (the TIN, or triangu-
lated irregular network model);

- an irregular array of polygons, with the value of the
field assumed constant within each polygon [the ‘poly-
gon’ model in subsequent discussion (see Fig. 2b)].
Although many other representations are possible, such
as arrays of hexagonal cells, they have not been ex-
ploited to any great extent in geographical data modeling
to date.

Each of the six field models creates sets of points,
polylines, or polygons, and thus at this superficial level
the distinction between field and entity becomes moot
within a digital representation. The term ‘vector’ is used
to refer ambiguously to all three types of entity models,
and all but two of the field models, while the term
‘raster’ refers to the second and third field models.
Moreover, any set of non-overlapping entities can be

represented as a field whose value is the entity identifier
at locations inside an entity, and zero elsewhere.

However, the distinction between entities and fields
is critical when the behavior or processing of points,
polylines. or polygons is considered. The polygons of a
field representation must collectively exhaust the space,
and cannot overlap (Fig. 2b); one polygon cannot be
dragged over another during editing, and common
boundaries can be moved only as long as they do not
intersect other common boundaries. The polylines of a
contour representation cannot cross, and adjacent con-
tours must have adjacent values. At a more sophisti-
cated level, the common process of interpolation be-
tween a sample of points representing a field, exempli-
fied by the contouring operation, makes no sense what-
ever if the points are conceived as entities littering an
empty space.

Each of the six field models has its own characteris-
tics. and some of these are important in any effort to
integrate GIS and remote sensing. First, only two of the
field models are appropriate for discrete (categorical,
multinomial) fields: the regular array of cells, termed
the ‘raster’ model for the purposes of this paper, and the
polygon model (Fig. 2). In both cases the value assigned
to each object in the representation, respectively cell
and polygon, may be assumed to be the most common or
modal value of the field within the limits of the object.

Second. only three of the field models include a
representation of the value of the field at every point in
the plane: the regular array of cells, the polygon model,
and the TIN (triangulated irregular network). In the
remaining cases (irregular points, regular array of points,
and digitized contours) the model must be coupled with
some set of rules about interpolation if values are to be
determinable at any point in the plane. From an object
oriented perspective, it would be desirable to encapsu-
late the method of interpolation with the data model, but
in practice this is rarely done; instead, selection of an
appropriate rule or rules is left to the user.

The next major section of the paper discusses the
traditions of remote sensing and GIS within this concep-
tual framework. Because vegetation is traditionally
mapped as a nominal-scaled (multinomial) field of veg-
etation class, the emphasis will be on the raster and
polygon models of fields, illustrated in Fig. 2. Note,
however, that ratio-scaled fields of vegetation occur in
remote sensing in examples such as the Normalized
Difference Vegetation Index (NDVI).
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Remote sensing and GIS

Remote sensing

Although the technical problems of platform, instru-
ment, and preprocessing are important, it is assumed for
the purposes of this paper that remote sensing begins
when they have been overcome, with a so-called cor-
rected image. In its digital version, the image consists of
a representation of a multivariate field, each variable
capturing the radiation from the Earth’s surface in some
part of the electromagnetic spectrum. Each field is rep-
resented using a raster data model, the value of spectral
response in each cell or pixel being approximately the
mean value within the cell’s footprint on the Earth’s
surface. In relative terms, the positional accuracy of
each pixel is a small fraction of the pixel’s area, but in
absolute terms, positional accuracy is likely to be at
least nine pixels (that is, the true location of the pixel’s
central point may be anywhere within a 3 by 3 array of
pixels surrounding the point). When a scene contains
well-defined objects that can be identified on the ground,
it may be possible to register the image to a fraction of a
pixel; but if no well-defined objects are visible in the
scene, it may be difficult to find a pixel’s footprint on
the ground to better than an area of nine pixels.

When a scene is perfectly registered to the ground,
the error inherent in this digital representation is simply
the difference between the true value of the field at a
point, and the mean value of the containing pixel. How-
ever, in practice, with imperfect registration, error is the
difference between the true value at a point, and the
mean value of the pixel in which the point appears to
fall, which may be as much as two pixels away from the
point. In both cases, error depends on the local variabil-
ity of the field; if the field is constant over distances of as
much as two pixels, error can be zero. '

Much of the research effort in remote sensing over
the past three decades (for general reviews of remote
sensing and its applications see Colwell 1983; Jensen
1986; Lillesand & Kiefer 1987) has gone into methods
of classification - the conversion of a multivariate field
of spectral response to a univariate field of categories.
Ideally, classification attempts to recover the true class
present at every point in the plane; in practice, it recov-
ers the dominant class in each pixel. For example, in
agricultural applications it is possible to conceive of the
truth as the identity of the crop being grown in every
agricultural field. In practice, however, classification is
applied in areas where there is no such true class. For
example, in vegetation mapping the definition of a class
at a point will involve scanning a finite area around the
point (see the previous discussion of spatial resolution,
and note the implicit assumption that the spatial resolu-

tion of the classification is much less than the pixel size;
if it is not, it is in principle impossible to define the class
to which a pixel belongs). It may involve substantial
subjectivity, such that two randomly chosen but trained
observers would not always agree on the class to be
assigned at a point. This uncertainty of definition merges
with other sources of uncertainty, such as the mixed

pixel that overlaps two well-defined classes, or imper-

fect spectral discrimination between classes.

Even in cases where it is possible to conceive of true
classes existing on the ground, as in the agricultural
example, there will still be substantial spectral variation
within the signals obtained from each class. Discrimina-
tion between classes is thus imperfect, and the result
may be a ‘saltand pepper’ effect where individual pixels
form inclusions within otherwise uniform patches of the
same class. To remove such noise, it is common to apply
a filter after classification, often using an array of 3 by 3
pixels; the central value is often replaced by the modal
class of the array. In terms of the previous discussion,
this amounts to a coarsening of spatial resolution from
approximately one to ca. nine pixels (expressed in area
measure), although linear features of less than three
pixels width will clearly survive the filter.

Geographic Information Systems

Remote sensing is dominated almost exclusively by
the raster model of continuous or discrete fields. By
contrast, and as noted earlier, GIS uses a much broader
range of data models, and some currently available GIS
support all of the entity and field models. In this paper
the focus is on vegetation cover mapping, conceptual-
ized as a discrete or multinomial field. In GIS, such data
may have been obtained by remote sensing, or alterna-
tively by digitizing or scanning an existing map. Thus
the field’s digital representation may use either the
raster or polygon model. The choice may depend on the
original source of data (raster is more likely if the data
came from a classified scene, or by scanning a map, and
polygon is more likely if the data were created by
digitizing a map); the processing software used (some
GIS require the raster model for analysis and modeling,
and some require the polygon model); the analysis and
modeling to be performed; or the preferences of the
user.

Thus several options for the representation of a
vegetation map can be found in GIS practice. A raster
model may have been obtained by classifying a scene,
or by scanning a map; a polygon model may have been
obtained by digitizing a map, or by vectorizing a raster
representation. In the raster case the error inherent in the
model is attributable to the replacement of the true value
at a point by the dominant value in one or a small array
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(e.g. 3 by 3) of pixels; in the polygon case, the model
imposes an error through the replacement of the true
value at a point by the dominant value within a polygon
of arbitrary size and shape.

Thus both approaches involve information loss. In
the raster case, this is imposed by the pixel size, which is
likely a characteristic of the sensor beyond the user’s
control, and by the perceived need to remove ‘salt and
pepper’. In the polygon case, the reasons behind the
lumping of space into polygons are more complex, and
are reviewed here at some length. In each case, the
discussion includes an interpretation of the minimum
mapping unit, the area of the smallest polygon in the
model.

Cartographic: The traditions of map making have
evolved under the constraints imposed by available
technology. It is comparatively easy to draw a map of
homogeneous areas separated by sharp boundaries - the
boundaries can be drawn by pen, and the areas can be
filled using a variety of forms of shading or by applving
prepared textures. It is much more difficult to portray
fuzzy boundaries, small inclusions within larger areas,
ecotones, or spatially continuous change of any kind.
The minimum mapping unit may be the smallest area
that can be conveniently drawn and labeled at the planned
scale of the map. In addition, area boundaries may be
smoothed to create a cleaner appearance.

Management: Maps of vegetation cover are often made
for well-defined purposes, such as forest management,
and the areas shown on them may be managed as stands.
While vegetation cover may change continuously. man-
agement practice must work within well-defined bounda-
ries, and must be applied uniformly over each well-
defined area. The minimum mapping unit may be the
smallest area that can be conveniently managed.

Cognitive: Much mapping tradition is concerned not so
much with the accurate measurement of conditions on
the ground as with the communication of an impression
of geographic variation; in this interpretation, the car-
tographer plays a distinct role. It was observed earlier
that the entity models have more in common with every-
day human spatial cognition than the field models: the
polygon model, which blocks space into entities of
uniform character, can be seen as a response to human
patterns of thinking about geographic variation. The
minimum mapping unit may reflect a human need to
impose a certain level of uniformity on the landscape.
For some mix of the above reasons, it is common for
vegetation cover data obtained by remote sensing to be
aggregated into polygons with some minimum mapping
unit greater than one pixel (or nine pixels if a post-

classification filter has been applied). For example, it is
not uncommon to use Landsat Thematic Mapper data
(pixels of 0.09 ha) aggregated to a minimum mapping
unit as large as 20 ha, an aggregation factor of over 200.
Aggregation produces polygons whose value becomes
the commonest class of the pixels within the polygon,
although many other aggregation rules are available.
Pixels of other classes contained within the polygon
contribute to the error inherent in the model.

In summary, while both remote sensing and GIS
may embed a conception of the vegetation mapping task
as the creation of a digital representation of a univariate,
nominal (multinomial) field, they differ in several im-
portant respects that impede integration, or the effective
and integrated use of both tools. Because of the nature of
measurement instruments on the one hand, and different
disciplinary traditions on the other, remote sensing and
GIS have been dominated by two distinct data models,
raster and polygon. Since both approximate the vegeta-
tion field in different ways. techniques for measuring
and expressing data uncertainty, or related effects of
scale. resolution, and spatial aggregation, are generally
incompatible. The next section reviews the techniques
that have been developed for error modeling in remote
sensing. GIS, and the related field of cartography, and
places them within the integrated conceptual framework
discussed earlier.

Error models

For the reasons discussed in the preceding section, it
is impossible to create an exact representation of the
spatial distribution of a phenomenon as complex as
vegetation within a digital database. At the same time, a
digital representation is precise, and capable of giving
unambiguous answers to simple queries. It follows that
the response to a query, and the results of analysis,
depend on the details of the representation. As discussed
in the previous section, the representations used in re-
mote sensing and GIS are broadly distinct and incom-
patible.

This discussion will focus on two particular generic
queries, on the assumption that more complex queries
can be reduced to them. The two queries of interest are:
— the value of the vegetation cover class field at some
specified point (x,y); and
— the area of a specified vegetation cover class.

In order not to be misled by the precision of answers to
these queries, it is desirable that the database respond
with some appropriate measure of uncertainty in both
cases. In the case of a point query, the response should
include not only the class of the containing pixel or
polygon, but also some measure of the variation known
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to exist within the spatial object, whatever its source. In
the case of an area estimate, the response should include
some expression of confidence limits around the value
of the estimate.

Databases containing vegetation cover maps are be-
ing widely used at this time for purposes such as land
use control, and environmental management. If uncer-
tainty is known to exist in the responses to these two
generic queries, it is crucial that that information be
conveyed as succinctly as possible to the user-or deci-
sion-maker. It would also be helpful if map displays
could also convey some impression of uncertainty, as
discussed later in the paper.

For these reasons, there has been increasing interest
in accuracy issues in recent years, particularly in the
research community. This research follows three dis-
tinct threads, which will be discussed here under the
headings of classification, cartographic, and spatial sta-
tistical. Each offers its own answers to questions of how
accuracy should be described and measured. and propa-
gated into estimates of the uncertainty associated with
responses to queries. Because the remote sensing com-
munity has tended to follow the classification approach,
and the GIS community has favored the cartographic
approach, there is substantial incompatibility in their
approaches to description of uncertainty.

Anderson et al. (1976) proposed that 85 % be an
appropriate accuracy standard for land cover mapping.
The following sections review the various meanings
that have been ascribed to that statement, and associated
methods of measurement.

Classification

Over the past three decades, there has been widespread
use of remote sensing imagery to classify the land
surface. The spectral response of each pixel in a scene is
used to assign the pixel to one of a number of classes,
using various classification techniques. In this context,
accuracy is logically viewed as a problem of mis-
classification. A pixel is said to be misclassified if its
true class, as determined by ground check or from a
source of higher accuracy, is j, but its assignment by the
classifier is i (in this discussion the terms true or truth
should always be taken to imply ground check or a
source of higher accuracy; the general term reference
data is often used). Pixels assigned to a class other than
their true class are termed errors of omission. or false
negatives; pixels assigned to class i that are not truly of
that class are termed errors of commission, or false
positives. Note that any one misclassified pixel can be
regarded as either an error of omission or an error of
commission, depending on the perspective taken. Story
& Congalton (1986) refer to omission errors as produc-

er’s accuracy because the producer’s concern is presum-
ably to avoid them; commission errors define user’s
accuracy because a user is interested in knowing how
many pixels that appear to be of class i are actually of
class j.

Consider an idealized case, an image of a forested
area, divided into pure stands of different species. Be-
cause of the inherent limitations of remote sensing, it is
inevitable that some misclassification or confusion of
classes will occur, where pixels falling in stands of
species j are mistakenly assigned to class i. The likeli-
hood that this will happen depends largely on the differ-
ence in spectral response of the two species, and also on
the technical efficiency of the classification method
used: it is also dependent on the proportion of pixels that
intersect the edges of stands. It is helpful to think of
misclassification in the form of a matrix, in which the
cellinrow i, column j gives the number of pixels that are
truly class j but have been assigned to class i (Table 1).
This matrix has also been called the error matrix or
confusion matrix. The term error matrix will be used in
this paper.

If the pixels that have been subject to accuracy
assessment can be regarded as a random sample of the
entire population of pixels. then the entries in row i can
be divided by the row total to give an estimate of the
probability that a pixel of class / is actually of class j,
p(j 1 i). Forexample, in Table 1. p(B | A) =0.265. Alter-
natively, the entries in column j can be divided by the
column total to give an estimate of the probability that a
pixel that is actually in class j has been assigned to class
i, p(i1j). Here, as eisewhere in this approach. it is
assumed that the probability of misclassification is con-
stant for a given class over the entire image. In practice,
some areas may be more likely to be misclassified than
others, because of differences in the growing stage of
the trees. and numerous other factors. Several studies
(e.g. Campbell 1981; Congalton 1988a) have looked at
the extent to which errors tend to cluster in space,
indicating that the probabilities of errors are not con-
stant.

In order to estimate the error matrix, it is common to
conduct a random sample stratified by class. A random
sample of pixels classified as i/ is selected and checked
against the truth. The proportion that is found to be of
true class j is then used to estimate the probability
p(j 1i). Stratification is used because some classes tend
to be more abundant than others; in order to obtain a
reasonably sound estimate of the accuracy in each class,
it is necessary to assign a greater number of samples to
the rarer classes than would occur if sample points were
located randomly. There have been several studies com-
paring the effectiveness of alternative sampling designs,
particularly concerning the number of samples to be




A AR T A Tt e

o s N

L S L

e 8 WP A A B % TV A 1o T P RS

622 Goodchild, M.F.

allocated to each class in the stratified approach, and the
location of samples within areas of each class (e.g. Hay
1979; Fitzpatrick-Lins 1981; Rosenfield et al. 1982;
Congalton 1988b).

Much research effort has gone into devising suitable
overall measures to summarize the contents of an error
matrix. Let x;; denote the number of cases recorded in
row i, column j of the matrix, that is, the number of cases
where the true class was j and the assigned class was i.
The percent correctly classified compares the number of
correctly classified pixels (those appearing on the di-
agonal of the matrix) to the total number of pixels (in
Table 1,247/342 = 72.2 %). In order for this statistic to
be meaningful as an estimate of the probability that a
randomly chosen pixel will have been assigned the
correct class, it is necessary that the proportion of test
pixels in each column (the ratio of the column total to
the grand total) be the same as the proportion of total
area that is truly of that class. Since this is generally
unknown, the proportion of total area assigned to that
class is used instead. Thus the row totals, rather than the
column totals, are in the same proportions as the ob-
served areas. When a stratified sampling scheme has
been used, the totals must be adjusted by weighting each
case by the inverse of that class’s sampling density.

Unfortunately — although it is the most obvious
interpretation of Anderson etal.’s (1976) recommended
85 % accuracy threshold — the percent correctly classi-
fied can be a misleading statistic because a certain
number of correctly classified cases is expected to occur
by chance, even in the most confused classification.
Thus it is often replaced by a statistic which allows for
chance, and ranges from O in the case of the most
confused classification to 1 in the case of the most
accurate. Variously known as Cohen’s Kappa and K, ,,
it is defined as follows:

hmede L '€}

where a subscript replaced by a dot indicates summation
over that subscript, and N is the total sample size
(Congalton et al. 1983; Hudson & Ramm 1987). For
Table 1, Kappa = 61.6 %. Rosenfield & Fitzpatrick-Lins
(1986) describe a variant on the Kappa statistic that can
be calculated separately for each class; this is especially
useful when it is desirable to know the classification
accuracy of each class.

In some applications it may be useful to compare
error matrices. For example, a study may compare the
effectiveness of two image classifiers applied to the

same scene; it is then important to know whether one
classifier has outperformed the other (for a study of
interpreter variability in remote sensing classification
see McGwire 1992). It may also be interesting to com-
pare the effectiveness of a classification to a random
assignment of classes, to see if the classifier has done
better than chance. For many purposes, a simple com-
parison of Kappa values is sufficient. But, since any
error matrix .or Kappa statistic is based on a limited
sample, one might want to know whether the apparent
difference between two Kappa statistics could have
occurred by chance, implying that if other samples had
been taken, the answer might have been different.

Congalton et al. [1983; see Hudson & Ramm (1987)
for corrected equations] describe methods for conduct-
ing inferential tests of Kappa, using the methods for
testing discrete contingency tables described by Bishop
et al. (1975). In their simplest form, such tests assume
that the entries in the error matrices are strictly the
number of times a condition was observed. Weighting,
or other numerical manipulation of the table, will invali-
date this assumption, and must be dealt with using
special variants of the test.

The approach just described relies for its success on
the validity of its underlying conceptual model, of areas
of homogeneous class divided by sharp discontinuities.
This model may apply well to agricultural fields or pure
stands, but in forestland mapping it may be confused by
continuous variation within more or less homogeneous
areas. and slow transitions across boundaries along
ecotones. Both of these lead to a condition described
statistically as non-stationarity, in which the error ma-
trix captures only an average over the entire study area;
locally. and for a variety of reasons, the probabilities of
misclassification may vary markedly. To deal effec-
tively with non-stationarity. it is necessary to partition
the study area into regions of more or less constant error
probabilities, and to sample them with as many samples
as would have been used to characterize the entire study
area under stationarity; otherwise, the estimates of the
error matrix will be arbitrarily affected by the limits of
the study area. Moreover, the basis of regionalization is
unlikely to be known in advance, although Congalton et

Table 1. Example of an error matrix of four classes.

True class
A B C D
Observed class A 50 2 3 8
B 5 85 0 4
C 3 14 22 15
D I 19 1 %0
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al. (1983) describe discrete multivariate methods that
can potentially be used to identify the factors that cause
spatial variation in rates of error.

In addition to the problems of misclassification of
spectral response, some pixels will fall on the bounda-
ries between homogeneous patches, and will therefore
contain more than one class. Such mixed pixels are not
misclassifications in the same sense, and it is common
to avoid pixels that straddle boundaries in accuracy
assessment and the development of error matrices. Re-
cently, there has been much interest in improved image
classification methods that deal explicitly with the mixed
pixel problem (e.g. Smith et al. 1990).

An alternative approach is provided by fuzzy and
probabilistic classification techniques, which seek to
assign values to each pixel representing the pixel’s
degree or probability of membership in each class re-
spectively (Fisher & Pathirana 1990; Foody et al. 1992;
Foody 1992). As yet, these methods lack clearly defined
concepts of error or accuracy assessment.

Cartographic aspects

To a cartographer, the problem of map accuracy
assessment is perceived very differently. Whether its
source was remotely sensed imagery, aerial photogra-
phy, or ground mapping, a map of forestland cover
shows a set of non-overlapping, space-exhausting areas
with homogeneous characteristics, bounded by lines of
constant width. In one of the final stages of the map-
making process. the boundaries will likely have been
smoothed, or splined. to create a pleasing, orderly ap-
pearance.

Fig. 3. Epsilon bands of positional uncertainty applied to the
boundaries in a vegetation class map.

The accuracy of such maps is often seen in terms of

two questions:

- are the boundaries in the correct locations; and

- have the areas been assigned to the correct classes?
Hord & Brooner (1976) use this approach in their analy-
sis of land-use map accuracy. The new United States
spatial data transfer standard, now known as Federal
Information Processing Standard (FIPS) 173 [see
Morrison (1992), and other papers in that journal issue],
refers to these as positional accuracy and attribute accu-
racy respectively. Positional accuracy can be measured
by the Perkal epsilon band, a band of width epsilon
centered on the observed location of the boundary,
within which the true position of the boundary is as-
sumed to lie (Blakemore 1984), and Mark & Csillag
(1989) have described an alternative probabilistic ap-
proach. Fig. 3 illustrates the concept of an epsilon band.
Attribute accuracy can be described by a form of error
matrix, but note that the matrix now refers to the classi-
fication of each area, rather than to each pixel. In this
approach. the percent of areas correctly classified is
compared to Anderson et al.’s ( 1976) threshold of 85 %.

This form of accuracy assessment asks only whether
each area or polygon has been assigned to the correct
class, and thus ignores the almost jnevitable heterogene-
ity that results from the approximation of continuously
varying land cover characteristics. If an area is known to
be heterogeneous, the ‘correct’ class is normally as-
sumed to be the commonest class, but no assessment is
made of the occurrence of other classes within the
polygon. This approach to accuracy assessment is often
referred to as per polygon accuracy assessment, to dis-
tinguish it from the per pixel or per point approach of the
classification school. Unfortunately. this means that an
accuracy assessment based on the cartographic approach
cannot be transformed into one based on the classifica-
tion approach, or vice versa.

The cartographic approach has clear advantages if it
is reasonable to assume that areas are homogeneous,
and that boundaries are sharp and distinct (crisp). On the
other hand the classification approach is clearly more
appropriate if areas are heterogeneous, with substantial
inclusions of unmapped classes, or if boundaries are
indistinct (fuzzy). Chrisman (1989) shows how it is
possible using the cartographic approach to distinguish
between different sources of error, by observing whether
they result in small shifts in boundaries, or in reclassifi-
cation of entire areas (see also Chrisman & Lester 1991;
Lester & Chrisman 1991). In reality, some boundaries
on land cover maps are more distinct than others, and
some areas are more homogeneous than others; the
distinction is rarely clearcut.
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Spatial statistical aspects

From a statistical perspective, error is variation that
cannot be explained. Most forms of measurement are
subject to error, and statistical methods have been de-
veloped for describing the amount of error present, and
for analyzing data despite the presence of error.

In the measurement of a simple quantity like tem-
perature, it is conventional to conceive of a true value,
which has been distorted to an unknown degree by error.
Repeated measurements using different observers, or
different measuring instruments, would produce arange
of values characterized by a mean and a standard devia-
tion, and often with a histogram that follows the normal
or Gaussian distribution closely. A range of well-devel-
oped methods allow such data to be analyzed.

The spatial equivalent of the Gaussian distribution is
a range of maps, each showing the same general charac-
teristics but with individual patterns of distortion, and
each being equally likely to have been observed. The
range might represent the work of different interpreters,
or the use of different training sites for image classifica-
tion. An error model is defined as a statistical process
capable of generating such a range of maps given appro-
priate parameters (the Gaussian distribution is the most
commonly used error model for simple measurements).
Any one such map is termed a realization of the model.
Simple measures of error, such as the percent correctly
classified, are termed error descriptors. and may be
related to the parameters of an error model. For exam-
ple, the standard deviation, a commonly used measure
of measurement uncertainty, is a parameter of the Gaus-
sian distribution.

The use of an error model has numerous advantages.
The effects of uncertainty can be visualized by using the
error model to simulate a sample of possible maps.
Errors can be propagated by performing analysis on
several realizations of the error model, and computing
the variation in results across them. The parameters of
an error model can be calibrated by adjusting them so
that the range of outcomes under the error model matches
the range observed in reality.

One of the more straightforward applications of
forestland mapping is in the estimation of areas having
particular characteristics. For example, one might want
to know the total area of mixed conifer forest in
Mendocino County, California. Knowing that the data-
base includes misclassifications and errors, it would be
useful to know the standard error associated with the
estimate of area. Unfortunately, neither the classifica-
tion approach, with its error matrix and Kappa statistics,
nor the cartographic approach with its epsilon bands and
polygon error matrix, are capable of providing such an
estimate. However, given an error model, an estimate of

standard error can be made by generating a sample of
realizations, calculating area on each, and computing
the variation between them. Under appropriate circum-
stances, it might be possible to compute the standard
error analytically.

Several recent papers have described error models
for maps, and their use in predicting the effects of
uncertainty. Of most relevance to this paper are those
that deal with land cover maps, generally known as area
class maps. Goodchild et al. (1992) propose a general
error model, and show how it can be used to obtain
estimates of uncertainty in such GIS products as area
estimates. In their model, the uncertainty associated
with the class at any point is represented by a probability
vector in a raster representation. Each pixel ij is associ-
ated with a vector of probabilities {p;;, P, - Pyjn}s
giving the probability that the pixel truly belongs to each
class 1 through n. These probabilities can be interpreted
as the consequence of mixed pixels, of uncertainty of
class definition, as derivatives of fuzzy or probabilistic
classification, or as the effect of confusion of spectral
signatures - in this spatial statistical approach, the ori-
gins of error are not of immediate concern. The classifi-
cation approach described earlier assumes that the con-
tents of the vector are determined by the class to which
the pixel appears to belong.

In this model, the classes allocated to the pixels in
the database represent one realization of a stochastic
process defined by these vectors of probabilities. For
example. if there are two classes and the probabilities
for a given pixel are {0.5,0.5}, then one interpretation
might be that in the maps made by two independent
observers. one map would assign the pixel to class 1 and
the other to class 2. Over a large number of realizations,
the proportion of times the pixel is assigned to each class
will converge on each class’s probability.

In addition, Goodchild et al. (1992) propose that
within any one realization, the outcomes in neighboring
pixels be correlated, and the model also includes param-
eters describing the level of spatial dependence. For
example. if a large area of many pixels is suspected of
being conifer forest, but with a small probability of
being hardwood forest, a low level of spatial depend-
ence would imply that hardwood occurs in small inclu-
sions; a high level of spatial dependence corresponds to
large inclusions, or to the possibility that the entire patch
is hardwood rather than conifer.

The relationship between this model and the error
matrix discussed earlier is straightforward: the error
matrix assumes that probability vectors are a function
only of the class assigned to each pixel in an observed
realization. and leaves spatial dependence undefined.
The relationship to the cartographic approach requires
more detailed explanation.
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Consider a fuzzy boundary line between two classes
A and B on a map of vegetation cover. In probabilistic
terms. the fuzziness can be represented as a rate of
change of probability as the boundary is traversed. Far
to one side of the boundary, the probability that a pixel
belongs to class A is 1, and the probability of class B is
0. As the boundary is approached, the probability of
class A falls, at a rate depending on the degree of
fuzziness. Each realization of the stochastic process will
assign each pixel to one class, allowing the boundary to
be interred in a position that will vary from one realiza-
tion to another within the general area of the fuzzy
boundary. Crisp boundaries are represented by sharp
changes in pixel probabilities as the boundary is crossed;
every realization will place the inferred boundary in the
same position.

A less general model that omits spatial autocorrelation
between outcomes in neighboring cells has been de-
scribed by Fisher (1991) for soil maps. A general model
for raster data has been developed by Haining & Arbia
(1993). and Fisher (1992) has used a model of spatially
autocorrelated errors in digital elevation models.

In summary, while the classification and cartographic
approaches are useful to monitor errors in image classi-
fication and map making respectively, they are mutually
incompatible, and onlv the spatial statistical approach
offers sufficient generality to deal comprehensively with
the problem of error propagation into the products of
GIS analysis. and to provide a bridge between the dis-
tinct traditions of remote sensing and GIS.

Conclusions

Mapping of vegetation has a long and largely effec-
tive history. However. the introduction of remote sens-
ing as a commonly used and efficient means of mapping
vegetation has led to two contrasting and potentially
conflicting approaches. termed here the classification
and cartographic. The two approaches are particularly
distinct in their views on uncertainty: since any digital
representation of geographic variation must be an ap-
proximation, handling and representation of uncertainty
is a critical issue in the use of such data for analysis and
modeling.

This paper has proposed a reconciliation of these
two distinct traditions. through what has been termed
the spatial statistical approach. A vegetation map is
viewed as a multinomial field, a single realization of a
multinomial error model. Uncertainty is described
through the parameters of the model, and expresses
itself in the variation between realizations of the model.
The representation of the infinite information present in
a field in the discrete space of a digital computer is one
significant source of error, together with a variety of

other forms introduce:d at various stages in the data
collection and interprez2tion processes.

Recent interest in conservation, and in environmen-
tal change. has led to 2 r=newal of efforts to devise better
methods of land surface characterization. of which veg-
etation mapping is a sigiificant element. Such mapping
will necessarily alwavs fail short of being a precise
exercise in scientific —easurement, despite the avail-
ability of remote sensicg. However, the unification of
classification and cartcgraphic approaches. and the tra-
ditional perspectives or ~2mote sensing and GIS. undera
single framework may help to remove some of the
problems that have plzzued the field in the past.
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