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Dealing with Uncertainty in Categorical Coverage Maps: Defining, Visualizing,
and Managing Errors
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Abstract

There is a considerable body of literature on techniques de-
scribing and modeling spatial database uncertainty. Unfor-
tunately, spatial error modeling still isn’t available to the
general users of spatial databases. Spatial error modeling
will only become viable when spatial errors are easily de-
fined, visualized, and made available to spatial applications.
Easing spatial error modeling into the user domain will be
far easier if error definition, visualization, and management
are based on the same fundamental statistical principles.
Accordingly, this paper will describe a theoretical founda-
tion, using many geostatistical concepts, that allows for the
definition, visualization, and management of categorical cov-
erage map errors using random fields.

1 Introduction

While some GIS practioners incorrectly treat maps as re-
ality, maps are only representations of reality,[13] and thus
databases constructed from maps are also representations.
The quality of a spatial database depends on how well it rep-
resents reality, which depends in turn on numerous factors
in the processes used to create the database, such as mea-
surement error, uncertainty in interpretation, and digitizing

error. In this paper we focus on errors in one particular type

of spatial database, specifically categorical coverage maps,
where data quality is determined by whether the category
labeled at each point in the database matches what really is
there in the real world.

Most of the existing GIS research on spatial errors de-
scribes the magnitude of the various types of error[7]{10]
while the spatial antocorrelative component of error has re-
ceived less attention. The First Law of Geography states:
“Everything is related to everything else, but near things
are more related than distant things.”[15] To put it more
succinctly, spatial autocorrelation exists and is positive.

If the First Law did not apply to the real world, spa-
tial error modeling would be a trivial task using confusion
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matrices.[1] Confusion matrices (error matrices or contin-
gency tables) are used to better understand categorical data.
Confusion matrices are often created by comparing the data
to a ground sample or more accurate data. A confusion
matrix stores the probabilities that a given category value
might be any of the category values in the map. For exam-
ple, a categorical coverage map with three categories might
have the following confusion matrix:

90 .06 .04
C=| .08 .83 .09
.03 .02 .95

where the first category has a 90% chance of being category
one, a 6% chance of being category two, and a 4% chance of
being category three. Research that applies random values
to each cell to get a perturbed potential reality has been
done.[6] GIS practitioners would be able to choose a set of
random points in the study area and stochastically compare
the results of an analysis to the real world. They could see
for themselves whether the application answers the ques-
tions asked. Unfortunately, spatial antocorrelation exists,
and errors are spatially autocorrelated. Spatial autocorre-
lation of error defines the “texture” of the error.[8] Prod-
ucts of spatially sensitive GIS applications (e.g. buffer and
neighborhood commands) need the spatial autocorrelation
of source map error to understand their uncertainty. Unless
map construction metadata exists, issues such as product
uncertainty and sensitivity, risk analysis and others are con-
ceptually difficult.

Most map errors are spatially autocorrelated. For exam-
ple, consider a manually made landcover map. A cartogra-
pher delineates the boundaries between different landcovers
from one or multiple sources. There are three major forms
of error in this method: 1) Clump(s) of categories may be
mislabeled. 2) Clump(s) of categories may be missing. lLe.,
inclusions within other categories such as clearings in a for-
est, or along the edge between categories such as shrubby
areas between forests and grasslands. 3) Clump edges may
not be accurately positioned. Each of these forms of error
are spatially autocorrellated. L.e., if a point on the landcover
map is incorrectly labeled, nearby points will be more likely
to be incorrectly labeled than points further away.

Random fields can be used to represent spatially auto-
correlated error. In the case of categorical coverage maps,
random fields can be used to determine which of the possible
categories reside in each cell of a map realization. If map
error is understood and represented perfectly, a map realiza-
tion may be a possible representation of reality. By generat-
ing a number of potential realizations (ensembles in Monte
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Carlo simulation terminology), a GIS practitioner can run a
GIS application for each map realization, creating a set of
application products. This set of products can be used to
create sensitivity analysis of the application based on origi-
nal map error.

Ongoing research at NCGIA is creating a suite of public
domain software tools that explicitly define error in maps,
propagate map errors through all spatial analyses, and vi-
sualize the implications of map error on any and all spatial
analyses. This paper will discuss the implementation of er-
ror modeling software tools for categorical coverage maps
developed in the GRASS GIS. First, this paper describes
how map error descriptors, magnitude and spatial autocor-
relation, can generate random fields that represent potential
realizations of error. Second, various animation techniques
will be discussed, comparing their advantages and limita-
tions for specific problem solving goals. Finally, spatial data
management issues affected by the tools described in this
paper will be addressed.

2 Spatially Autocorrelated Uncertainty

There isn’t an elegant method to produce the metadata nec-
essary to determine the uncertainty of categorical coverage
maps. Each source of map error (inclusions, mislabels, and
boundary errors) needs to be defined separately and quan-
titatively. This paper presents a geostatistical paradigm of
predictive statistics to characterize categorical coverage map
uncertainty.

Each source of map error for each map category is then
represented as a probability surface Z and its random field
parameters. This section will describe the random field
generation process, random field parameters for each error
source, and r.random.model,[3} a GRASS program to gener-
ate realizations of categorical coverage maps.

To facilitate making descriptions of errors into realiza-
tions of error fields, r.random.surface[4] the following equa-
tion is used to generate normally distributed random fields:
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where Z(u) is a random field for the coordinate vector u,
Wy, is the spatial autocorrelative effect between points u
and v, €, is an independent Gaussian random deviate with
a mean of zero and variance of one, d4 . is the distance be-
tween points u and v, D is the minimum distance of spatial
independence, F is the distance decay exponent, and v is
the coordinate vector of independent Gaussian random de-
viate points within D’s spatial autocorrelative effect of u.
Edge effect problems do not exist using v (for a compre-
hensive discussion of edge effects, see[9]). v also allows a
combination of D and E parameters to have a specific theo-
retical correlogram, independent of u. This greatly reduces
the task of determining random field parameters for known
error fields.

While equation (1) generates normally distributed ran-
dom fields, uniformly distributed random fields are needed
to select appropriate category classes from a probability dis-
tribution. A normally distributed random field from (1)
is converted to a uniform distribution by determining each
Z(u) percentile ranking based on the distribution of €,. The

rest of this paper will use Z(u) to represent a uniformly dis-
tributed random field. Any given Z(u) will have an equal
probability of being any value between 0.0 and 1.0. See [5]
for a more complete description of this random field model.

There is a straight-forward way of applying the random
field parameters D and E to the various categorical coverage
map errors. Each form of categorical coverage map error will
be treated separately below.

Conceptually, class inclusions are the simplest form of
categorical coverage map error. An inclusion occurs when
a cell is described as a category with a X% chance of be-
ing another class. The Canadian Geographic Information
System[16] is an excellent example of a GIS incorporating
inclusions directly in the database structure. The Cana-
dian Geographic Information System allows for up to three
classes in each polygon (e.g. 80% deciduous forest with 15%
inclusions of coniferous forest and 5% inclusions of grass-
lands). Cartographers can determine the random field pa-
rameters by comparing the size and distribution of known
inclusions to a representative sampling of random fields.

Figure 1 shows 12 inclusion patterns of 25% inclusions
with various random field parameters. The topology of a
random field Z(u) using distance decay exponent E values
greater or equal to 1.0 can be characterized by round and
oval hills, valleys and texture. The patterns in Figure 1
are formed from the lowest values in uniformly distributed
random fields:

W _ ) 1::0) <2
(u,z) = { 0 : otherwise (2)

where I()(u, z) is the realization of a category from a cat-
egory coverage map for the coordinate vector u, the vector
z contains the probability that the category exists in that
spatial location for that category coverage map,* and 2(”(u)

is a uniformly distributed realization of Z(u). Linear inclu-
sions (e.g. creek beds and ore deposits) can be generated
using the median values of the random field realizations to
determine inclusions:

(1 _ ) 15-2/2<:0M) < .5+12/2

I )(u, z) = { 0: othervéise W / ®)
where [()(u,2) is the realization of a linear category from
a category coverage map, and 2%(u) is a uniformly dis-
tributed realization of Z(u).

Figure 2 shows 12 examples for linear inclusions gener-
ated by using the median values from a random field. The
linear features from median values result from regions be-
tween the hills and valleys of random fields with large spatial
dependencies.

Category mislabeling map errors as conceptually similar
to inclusion errors. The only difference is that the spatial
dependence parameter of a mislabeled “inclusion” will be
larger than the regions potentially mislabeled. For exam-
ple, consider a satellite image of landcover for a National
Park. Rock outcroppings and parking lots will have similar
signatures. A landcover map might have many 40m by 40m
regions of rock outcropping where 10% of the rock outcrop-
ping might actually be parking lots. Generating random
fields with the spatial dependence parameter D set to 500m

f a category has multiple uncertainty spatial dependencies for
a particular map (e.g. grasslands in a landcover map with multiple
terrain types), then the category should have multiple probability
vectors, one for each terrain type and/or spatial dependency.
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Figure 1: 12 white classes with 25% inclusion of black with varying spatial dependence D and distance decay exponents E.
The D of each row is double of the row below (40, 20, & 10 cells with the resolution of maps: 61 by 50 cells). The F of each
column is double of column to its left (1.0, 2.0, 4.0 & 8.0). Each random field’s independent random deviates are the same

for comparison purposes.

linear.eps

Figure 2: 12 white classes with 25% inclusion of black linear features with varying spatial dependence D and distance decay
exponents E. The D of each row is double of the row below (40, 20, & 10 cells with the resolution of maps: 61 by 50 cells).
The F of each column is double of column to its left (1.0, 2.0, 4.0 & 8.0). Each random field’s independent random deviates

are the same for comparison purposes.




or greater (and the distance decay exponent E set to 1.0,
minimizing texture) make it likely that if a cell within a rock
outcropping region is set to parking lot, all cells in that re-
gion will be set to parking lot. The actual choice of D will
depend on the spatial autocorrelation of mislabeled regions
(i.e., if mislabeled regions are clustered, the size of clustered
regions should determine D).

Positional errors are the third form of categorical cov-
erage map error. Sources of these errors include rectifica-
tion error and uncertainty of category boundaries. Region
boundaries may be represented as a transition zone between
two or more categories.[12] Each transition zone will have a
probability of 100% of being a class at close edge of the tran-
sition zone to 0% at the far edge. Figure 3 shows 12 transi-
tion zones between two classes. The left edge of each zone
has a 2% chance of being black and the right edge has a 98%
chance of being black. Figure 3 transition zones are linearly
interpolated between 0% and 100%. Ideally, the transition
zones should represent a normal distribution of expected
boundary locations. Varying the parameters of D and F al-
lows the cartographer to determine the texture of the edge
line. As E increases, edge line complexity increases. As D
increases, the edge lines develop more gradual curves. As
D approaches infinity, the boundary lines will become par-
allel to the transition zone, but each realization’s boundary
will be distributed throughout the tramsition zone. While
positional error can be represented in this manner, research
continues at NCGIA to develop more elegant solutions for
perturbing positional errors.

With the major forms of categorical coverage error de-
fined, r.random.model provides a process to generate map
realizations. To run properly, r.random.model requires a set
of probability maps, at least one for each category, and a
set of random fields, one for each probability map (built
using the category’s spatial autocorrelative parameters) ex-
cept the final map. For each cell, r.random.model ccmpares
the probability of each category with its random field map
in the order the category maps are given. The order is some-
what important as the error shapes of earlier categories will
affect the shapes of later categories. This approach is sim-
ilar to geostatistic’s sequential simulation approach,[2] and
is represented by:

Z1+ 22+ ...+ 2, =1.0
1: égl)(u) <z
0: otherwise

S(1 z
Cz={ 1:2'5)(11)3'1?%—1‘

0: otherwise

H-Y P
Cp = l_zlz': (4)

it
0: otherwise

Cll C1 = 1

Cy:cq =0,c2=1

M(‘)(u) =

where M(l)(u) is a potential realization of a category cover-
age map of vector u, z; through z, are probability maps of
categories C1 through Cy, and :2([)(u) through 253)(u) are
potential realizations using spatial uncertainty parameters
particular to each category.

Figure 4 shows two different realizations of a section
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Figure 4: One section of GRASS’s Spearfish landcover map
(top) along with two realizations of landcover.
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Figure 3: 12 transition zones with varying spatial dependence D and distance decay exponents F. The left edge of each
transition zone has a 2% chance of being black. The right edge has a 98% chance of being black. The D of each row is double
of the row below (40, 20, & 10 cells with the resolution of maps: 61 by 50 cells). The F of each column is double of column
to its left (1.0, 2.0, 4.0 & 8.0). Each random field’s independent random deviates are the same for comparison purposes.

of Spearfish’s landcover map along with the original sec-
tion (the Spearfish database is available via ftp along with
GRASS). Except for 15% inclusions of decidous forest (thin
/// lines) and 10% inclusions of rangeland (skinny vertical
lines) in coniferous forest (white), the realizations only take
positional uncertainty into account. The positional uncer-
tainty is represented by transition zones 400m wide, with
a linearly interpolated probability between adjacent cate-
gories. Note that the error parameters chosen for this study
are for illustrative purposes only. NCGIA is currently ex-
ploring data collection methods that generate spatial auto-
correlation parameters along with the probability distribu-
tions of category classes.

3 Visualizing Uncertainty

Even if the explicit description of a map’s error is definable,
visualizing the map and its potential errors is not a trivial
task. For the sake of discussion, consider the following prob-
lem: A landscape architect wants to locate a campground
near the town of Spearfish, SD. Wishing to take advantage
of existing landcover, the landscape architect wants to iden-
tify regions containing small clusters of deciduous forest,
coniferous forest, and rangeland in close proximity to each
other. The landscape architect’s goal, as well as many GIS
applications, may not be easily quantified.®> In this case, the
landscape architect needs more than a “the category most
likely” or even probability surfaces of potential categories.
Showing the effects of map uncertainty and the influence
of uncertainty’s spatial autocorrelative effects on applica-
tions is a more difficult task. Depending on the application,

2 This situation can be placed in the “I can’t define it, but I'll know
it when I see it” category of GIS use.

it can be difficult to see how a map will affect that appli-
cation. It is difficult to imagine the resulting shapes of a
landcover map by viewing the random fields modifying it.
It is even more difficult to imagine the potential shapes of a
random field by knowing the specific error descriptors neces-
sary to construct a representative random field. Unless the
error is so minute as to be irrelevant, it is probably impos-
sible to see how the error descriptors will modify the shapes
and results of applications.

Considering the infinite variety of potential map error
shapes and the lack of a systematic way of cataloging them,
the only practical way to demonstrate map error is to show
an ensemble of potential maps. This ensemble of map re-
alizations will likely be formed with Monte Carlo sampling
techniques due the potentially thousands of random vari-
ables needed to create one map realization.

Monte Carlo sampling has been proposed in error model-
ing as an analytical tool[14] because it can find the range of
an application’s variability easily. Openshaw suggests that
a limited number of application runs (as few as thirty) is
enough to give a statistical understanding of the application.
For visualization purposes, thirty potential realizations are
more than enough to show the general shapes caused by the
spatial autocorrelation of errors.

4 Managing Uncertainty

These visualization techniques are conceptually compatible
with Monte Carlo sampling as well as easy to understand.
They allow the viewer to see how the errors in maps affect
the quality of their application’s results without requiring
the viewer to explicitly understand the individual errors. By
visualizing the application’s results realizations and the data
realizations, the viewer can make more informed manage-




ment decisions about the likelihood that their application’s
results are representative of reality.

The main drawback to this visualization techmique oc-
curs when the time required to show a representative sam-
pling of realizations exceeds the attention span of the viewer.
This can be a real problem if maps contain complex error
descriptors or if unlikely potential realities can significantly
affect the analyses of an application. For example, suppose
a significant event only has a 1% chance of occurring. If
the Monte Carlo simulation only has 100 realizations, there
is .99 or 36.6% chance that the significant event will not
be in the sampling. If the viewer is seeing one realization
every second, he or she might not to wait for the nearly
two minutes to view the relevant realizations. There are
work-a-rounds to these problems, but they require the GIS
practitioner to understand the ramifications of the potential
misuse of information presented from a statistical perspec-
tive.

The worse thing that can happen is that the user can
fall into a false sense of security due to the “pretty graph-
ics” of animations technique. The authors hope that these
visualization techniques are used to understand error, not

hide it.

5 Concluding Remarks

This paper has discussed spatial data uncertainty issues, es-
pecially as they relate to categorical coverage maps. The
most difficult part in defining spatial data uncertainty is
determining the spatial autocorrelation and being able to
represent this in a GIS. Random fields can be used to rep-
resent the various sources of spatial error, allowing realiza-
tions of data to be simulated. Applying the realizations of
data to a GIS application creates an ensemble of applica-
tion results. A set of ensembles for a GIS application gives
the user a statistical perspective on the application’s pos-
sibilities. The user can get a visual understanding of their
application’s uncertainties by displaying the ensembles in an
animation where time dimension represents the likelihood of
occurrence. Finally, the advantages and drawbacks of this
Monte Carlo scheme were discussed.
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