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ABSTRACT )

-
o~

As the application of spatial databases becomes increasingly diverse, an issue of growing concern is
the inability to determine whether the quality of the products derived from these databases are
suitable for their intended purposes. For many users of the technology, understanding the quality
with their outputs will help achieve one of the "bottom lines" in using spatial databases, namely the
delivery of accurate information. To help meet this demand, a toolbox for communicating the
uncertainty associated with certain types of spatial database products has been developed, by which

users will be better placed to make data quality assessments. This paper will describe the design and
application of the toolbox.
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INTRODUCTION

An issue that has become of increasing importance to spatial database users in recent years is that of
assessing the quality of their system products. As the applications of these systems become more
sophisticated, and as users grow more experienced in the technology’s strengths and weaknesses,
questions are being increasingly raised as to whether or not the quality of the outputs necessarily
matches the requirements of the tasks for which the information is to be employed. For many users,
understanding the quality their system outputs will help achieve one of the "bottom lines” in applying
spatial databases, namely the delivery of accurate and appropriate information. Thus, the debate
about uncertainty has reached the stage where there is a critical need for tools to be developed to
assist users in better understanding the nature of the outputs derived from their systems.

Before discussing the options available for dealing with this problem, some explanatory remarks are
required regarding the use of the term ‘uncertainty’. In general terms, it denotes a lack of sureness
or definite knowledge about an outcome or result. In the context of spatial databases, the authors
suggest there is a clear distinction to be made between ‘error’ and ‘uncertainty’, since the former
implies that some degree of knowledge has been attained about differences (and the reasons for their
occurrence) between the results or observations and the truth to which they pertain. On the other
hand, ‘uncertainty’ conveys the fact that it is the very lack of such knowledge which is responsible
for hesitancy in accepting those samne results or observations without caution, and often the term
‘error’ is used when it would be more appropriate to use ‘uncertainty’.

It is well known that there are many potential sources of error in spatial databases (as discussed in
Hunter and Beard, 1992), but because so little is understood about the way in which those errors

- (either singly or in conjunction with each other) affect the outcome of the final products (be they

displays, maps, graphs or reports), there is a resultant uncertainty concerning the level of trust which
should be placed in them. Indeed, Goodchild (1993) notes there are only some half dozen known
and widely accepted error models for the many hundreds of spatial database operations available.

In some ways, the distinction between error and uncertainty is analogous to the legal belief that a
person is ‘innocent until proven guilty’, since in many cases conceptual models of spatial database
error simply do not exist and it is suggested that until that situation improves, ‘uncertainty’ offers a
more appropriate means of describing such lack of proof. This does not mean that ‘uncertainty’
should always be substituted for ‘error’, as there already exist a small number of well established
error models for given spatial operations and they are properly described as such, however in
situations where there is little knowledge of the actual errors involved, as in the case study
described, it is uncertainty which will be referred to by the authors.

At this time, there are three options available (Goodchild, Chih-Chang and Leung, 1993) for dealing
with uncertainty in spatial databases, viz.:

(1) omit all reference to it;
(2) attach some form of descriptor to the output; and
(3) show samples from the range of possible maps.

The first approach (the ‘do nothing’ option) treats the problem by ignoring it; undoubtedly the
easiest solution to adopt, but one which potentially places at risk the reputations of decision-makers
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(and their agencies) who have to act on the basis of such information. The second option would see
the use of descriptors such as epsilon bands, misclassification matrices, reliability diagrams, and root
mean square error estimates. In effect, these are a caveat to users and while they give warnings
about product uncertainty they provide little assistance in showing how the resultant output might
spatially vary, although with further development they can be more usefully interpreted as Hunter
and Goodchild (1994a) have shown in the case of the root mean square error estimate for Digital
Elevation Models (DEMs). Finally, different versions of the same map might be presented to users
to illustrate the uncertainty their products are subject to due to the particular combination of data,
erTor estimates, algorithms and other models which have been chosen for the task at hand. -

This latter approach is the one preferred by the authors, since it would appear to have the greatest
potential benefit in both communicating uncertainty and at the same time educating the user
community in the significance of the issue. Accordingly, this paper discusses the design and
application of a toolbox which permits uncertainty reporting for certain types of spatial database
products. By presenting the level of uncertainty which resides in an output, such a toolbox might -
assist agencies in determining the degree of uncertainty they are willing to tolerate before it either
changes the decisions made on the basis of that information, or else (in the worst case) causes the
benefits of spatial database usage to be lost. In the reverse role, the toolbox could provide pre-
testing of different combinations of data, error estimates, algorithms and models to assess which
ones are most likely to suit the user’s needs.

At this stage, the toolbox is restricted to the study of grid-cell data and, specifically, the outputs

derived from the use of DEMs, however even in this restricted role it has considerable relevance to- -

natural resource and environmental applications where the raster data model has greater suitability
for representing inherently continuous variation. In addition, the raster model more easily
accommodates simulation techniques such as those used in this research.~The paper discusses (1)
the underlying model of uncertainty employed, (2) its potential applications, (3) incorporation of the
model into a toolbox to handle uncertainty, and (4) a case study illustrating the toolbox’s application
in determining the uncertainty associated with calculating the ‘northness’ index derived from DEMs
- as used for identifying vegetation communities and studying species diversity.

THE UNDERLYING MODEL OF UNCERTAINTY

The basis for the toolbox is a version of the model developed to represent uncertainty by Goodchild,
Guoqing and Shiren (1992). In general terms, the model can be defined as a stochastic process
capable of generating a population of distorted versions of the same reality, with each version being
a sample from the same population. The traditional Gaussian model (where the mean of the
population is an estimate of the true value and the standard deviation is a measure of the variation in
the observations) is one attempt at describing error, but it says nothing about the processes by which
it has accumulated. In certain cases where the Gaussian model is not applicable, the proposed model
offers an alternative solution to assessing uncertainty. Not only does it have the advantage of
showing spatial variation in uncertainty, but it includes the effects of spatial autocorrelation (r) and
the likely propagation of error arising from the spatial operations that have been applied.

The model permits a data set (such as a DEM) to be perturbed according to an error estimate (its
RMSE value), and then used for other applications so that different versions of the same map are
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produced. In a previous paper, Hunter and Goodchild (1994b) argued that while it is possible to ~
perturb a data set according to an error descriptor (such as the RMSE value) without consideration
of spatial autocorrelation between point sample elevations (that is, r = 0), the process is stochastic
but lacks ‘truthfulness’ —~ since adjacent elevations can be severely distorted by the creation of large
pits and peaks which do not intuitively occur in practice. This approach produces what are known
as ‘random maps’.

On the other hand, assumption of complete spatial dependence between neighbouring points (that is,
r = 0.25) produces realisations of the DEM which are ‘truthful’ but not stochastic, since elevations
are constrained to maintain their relative differences to each other and the intoduction of a noise
value only has the effect of moving DEM elevations ‘all up’ or ‘all down’ by a constant amount.
Hence, there is a need to find the spatial autocorrelation value in the domain 0 < r < 0.25 at which
the dual requirements of being both stochastic and ‘truthful’ are met. The limit of 0.25 ensures
stationarity when the Rook’s case is used to test a cell’s elevation against its four neighbours sharing
a common edge (as discussed in Cliff and Ord, 1981, p. 147).

By producing distorted versions of the DEM for different r values, and by studying the change in

differences between the realised data and the original data, it is possible to make reasonable

deductions as to what an appropriate 7 value might be. In the paper already referred to (Hunter and

Goodchild 1994b), separate realisations of slope gradient and aspect values were derived from a

DEM with the latter, in particular, showing a marked change in response at approximately r = 0.24,
- while slope gradient only started to significantly vary from r = 0.20 onwards.

Of course, the realisation process need not stop there, as the different slope gradient and aspect
maps can be input to, say, hydrologic models to produce alternative realisations of drainage basin
parameters, which in turn can be used to derive realised runoff characteristics. At any stage, the
differences between the realised maps and the original (as produced from the source data without
any consideration of uncertainty) may be analysed to assess the resultant effects. The attractiveness
of this approach is that even though it is not known how error is being propagated, its likely effects
are nevertheless displayed.

POTENTIAL APPLICATIONS OF THE MODEL

The potential applications of the model lie in four areas. First, the realisation process may be used to
highlight areas of a map which are susceptible to change in parameter values. For instance, Hunter
and Goodchild (1994b) demonstrated that the calculation of slope aspect from a DEM was.
particularly susceptible to variation in terrain elevation in relatively flat regions while large hillside
slopes remained relatively stable. While such a conclusion is already fairly well established, this may
not always be necessarily so and where complex process models are applied their effects may still be
largely unknown. In other applications, the observed differences might be used as input to
sensitivity analyses to understand how changes in parameters impact upon the decision making
process, as in landuse suitability and capability studies.

Secondly, the technique can be useful in cases where differences per se, are not as important as
assessing the likelihood of a cell’s membership of a particular class. For example, in viewshed
computations cells are computed as being either visible or not visible from a viewing point. Sets of
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realisations taken at different  values can be added to compute a ‘score’ for each cell (together with
a mean and standard deviation), which in turn may be used to calculate the probability of a cell
satisfying the criteria associated with the operation — thereby overcoming the ‘in or out’ Boolean
responses normally associated with spatial databases. Users can thus nominate a confidence level to
be met when assessing the results of the process (for example, ‘cells must have a 90% probability of
being seen’).

Thirdly, a user might want to display several realisations of a map to understand the degree of
variation associated with the processes involved. For example, instead of interpolating contours
from a DEM just once, several realisations might be made to assess not only the impact of elevation
uncertainty on the process, but also the variation due to the interpolation procedure itself. This
approach could also be applied to other raster-to-vector conversion procedures in which class
polygons or linear features such as stream patterns are required, thereby producing a family of
possible boundaries or linear features.

Finally, simulations can be undertaken to study the effect on map products where competing data
sets, error estimates, algorithms and process models are available. This ‘reverse engineering’
approach might also be applied by users who, having already studied several possible realisations of
a desired map, and having identified areas exhibiting levels of uncertainty considered unacceptable,
wish to see how different uncertainty reduction options (for example, recollecting data at a higher
accuracy) would affect the final outcome — before returning to the field site or purchasing alternative
data sets.

DEVELOPMENT OF THE TOOLBOX

The design of the toolbox to handle uncertainty embodies the model previously described and is
shown in Figure 1. It consists of four key stages, with the first one requiring the user to combine
whatever data, processes and models are needed to generate the desired output — in other words, to
apply the spatial database as would normally be done without any consideration of uncertainty.
From the beginning of the procedure, a log is kept of the commands used which will later be applied
in producing the realisations.

In the second stage, the parameters necessary for the realisation process are determined. By reading
system variables associated with the source data file, the number of rows and columns in the data
file, the cell size, and the geo-referencing details of the data can be ascertained. These will be
required later when the noise files are to be transformed to agree with the actual data set used. Any
constraints applied during processing will be embedded in this file, such as in a viewshed
computation where cells immediately surrounding the viewing point are usually masked out or held
fixed (and therefore assumed to be always seen) so that their elevations are not perturbed and
thereby possibly obscuring large areas of the viewshed. An error estimate for the source data will
also need to be identified and this would normally be the RMSE estimate supplied with the DEM.

While not a direct step in the realisation procedure as such, the noise files to be employed would
usually be previously computed and then permanently stored in the system for future use. The way
in which they are generated has already been described in Hunter and Goodchild (1994b). To date,
it has been considered sufficient for most applications tested for about ten files to be held for each
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value, although users would have the option of creating a greater number of noise files for specific
tasks in the final module of the methodology. The default » values chosen for the noise files are 0.0,
0.05, 0.10, 0.15, 0.20, 0.21, 0.22, 0.23, 0.24, 0.245, and 0.249. As for the maximum value of r
offered (0.249), experience to date has shown there is little to be gained from using r values higher
than this since the realisation process becomes so constrained that there is no discernible difference
between the realised maps and the original.

In stage 3 of the toolbox, it is expected that users will want to see a small number of initial trial
realisations and the default r values listed above are applied. A single realisation for each value is
performed by first applying the parameters derived from stage 2 to geo-reference and transform the
coordinates of the noise grid. Next, the error estimate is applied to map the noise values from a
Normal distribution of N(0,1) to N(O,RMSE) so that it has a distribution similar to the original
DEM. This adjusted noise file is added to the source data to produce a realisation to which the
commands employed to create the original output are applied. The realised maps and the differences
between the realisations and the original outputs can be mapped or graphed. Finally, in stage 4 of
the toolbox the user may choose one or more approaches for more detailed investigation of product
uncertainty, as discussed in the previous section, and with a greater variety of reporting output -
products available.

At this time, the toolbox has been developed as a series of macro command files in ARC/INFO for
use in a workstation environment. Also included in the toolbox is the executable code needed to
produce the sets of realisations for different r values, as developed by the U.S. National Center for

' _ Geographic Information and Analysis. It is envisaged that the toolbox would be used by analysts

within an agency tasked with assessing the uncertainty associated with DEM-based products. To
ensure the widest possible use of the toolbox, the software will be made freely available upon
request. o

A CASE STUDY IN ASSESSING UNCERTAINTY

The case study to be discussed deals with the uncertainty of the derivation of the ‘Northness’ index
commonly used in image analysis to identify vegetation communities and to study species diversity
and ecological land classification (Davis & Goetz 1990, Davis & Dozier 1990, Fairbanks 1993). It
is applied to grid cells as a measure of how much sunlight is reaching the vegetation within the cell,
and is a function of both slope gradient and aspect. It is calculated by equation (1) and takes values
in the range £1.0. Thus, the uncertainty of the index derived for each pixel in an image is a function
of the DEM elevation error, the algorithms used to calculate slope gradient and aspect, and the
‘Northness’ equation itself.

‘Northness’ = sin (Slope Gradient) * cos (Slope Aspect) ¢))
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The topographic data used for the study came from the California-based EROS Data Center and was
originally developed for a US continental land cover database. The DEM was first derived by the
Defence Mapping Agency (DMA) from 1°x2° 1:250,000 topographic maps with (mostly) 200 foot
(60.96 m) contour intervals. The grid nodes were spaced at 3 arc-second intervals in the X and Y
directions. The DEM was subsequently interpolated by the National Telecommunications and
Information Administration and the elevations rounded to the nearest 20 feet (6.1m) for every 30
arc-seconds of latitude and longitude. The file has since been re-interpolated to a grid size of 1000
m x 1000 m, with point elevations supplied to the nearest metre.

As a result of the considerable reprocessing to which this particular file has been subjected, there is
no longer any error estimate attached to it. However, while the specific details of its lineage remain
obscure it is suggested that the error estimate which the file had when produced by the DMA serves
as a useful (although by now, conservative) basis for this study. From the USGS documentation on
DEM accuracy (USGS 1990, pp. 13-14) it is noted that the DMA production objective is to satisfy
“... an absolute vertical accuracy (feature to mean sea level) of +30 m, linear error ar 90-percent
probability” .

While it is not specifically stated, it is assumed by the authors that this relates to a Normal
probability distribution which would give a standard deviation of 18.2 m. This is confirmed by the
classification of the DMA product as level 3 by the USGS, in which "... an RMSE of one-third of the
contour interval is the maximum permitted” (USGS 1990, p. 15), and would thus be approximately
20 m given the 60.96 m(200 feet ) contour interval on the original 1:250,000 source maps. Under
these circumstances, a standard deviation of 20 m has been initially adopted for the research.

= -

The test site measures 480 rows by 435
columns (or 480km x 435km) and covers
the central Californian coast ranging from
San Francisco Bay in the upper north-west
corner and Santa Barbara in the bottom
centre. Elevations range from sea level in
the west to over 4000 m in the mountain
ranges to the east.

Figure 2 (left) shows the Northness' index
values for the test site shaded from black
(-1.0) through to white (+1.0), with mid-
gray cells which indicate a value of zero.
The mountain ranges either side of the
north-south running San Fernando valley
can be clearly seen in this illustration.

The difference between the traditional approach to calculating the ‘Northness' index and the
proposed approach which permits its uncertainty to be assessed, can be seen in Figure 3. The latter
technique applies elevation noise files, for different values of spatial auto correlation, to the original
DEM to establish corresponding sets of slope gradient and aspect files for the test site. Each pair of
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realised gradient and aspect files is then taken in turn and used to calculate a corresponding
"Northness index files.

1. Traditional Method

Gradient
file
Original > Northnes:
; |
Aspect
file
2. Proposed Method

Realised
Gradient
Original files
DEM '
+
~ —  —

Realised
Northness
files

Noise files -
w'p'hva,“ i ':9 Realised
Aspect ”
files

Figure 3: Showing the difference between the traditional approach to calculating the
Northness' index and the proposed approach which permits its uncertainty to be assessed.

As per stage 3 of the toolbox, an initial set of realised Northness' index files was calculated for the r
values 0.0, 0.5, 0.10, 0.15, 0.20, 0.21, 0.22, 0.23, 0.24 and 0.245. The grid cells in each realised file
were then subtracted from their cormresponding cells in the original Northness' file to provide a
'difference’ file. This difference represents the amount by which the final 'Northness' index value
might be expected to vary under terms of uncertainty due to variation in the elevations of the
original DEM and the subsequent series of spatial operations that were performed on the data.

The mean and standard deviation of each difference file were then calculated and graphed. Figure 4a
shows that the average differences are very small and decrease gradually from r = 0, whereas Figure
4b shows a slight initial rise in the standard deviation of the differences, followed by a sharp decrease

from about r = 0.20. From this information it is clear that the 'Northness' index is only affected in
the second or third decimal place of its value.

Id
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Stage 4 of the toolbox was then applied and ten realisations were computed for the 'Northness' index
at values of r = 0.20, 0.22, 0.24 and 0.245. Each set of ten realisations was added and a mean
'Northness' index was computed for each cell. Visually, there were no significant differences
" between the four mean 'Northness' grids computed other than a decrease in graininess as r increased
(that is, as the DEM perturbations became more constrained).
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Figure 4a: A Graph showing mean differences versus r value, between the initial realised maps and
the 'Northness' map originally derived from the source DEM. -
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Figure 4b: Graph showing the change in standard deviation of the differences between the initial
realised maps and the original 'Northness' map for each value of r applied.
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The differences between these mean realised grids and the original Northness' grid were also
calculated and displayed by masking out differences within +2 standard deviations of the mean in
white, and highlighting those outside these limits in black. As can be seen in Figures 5a, b and ¢, for
realisations at r = 0.20, 0.24 and 0.245, there are no locally significant trends in variations in the
‘Northness’ index as a result of the procedures used.

Figures Sa (top left), 5b (top right) and Sc (bottom left) show differences between the original
"Northness' index map and the mean realisations for the 'Northness' index at values of » = 0.20, 0.24
and 0.245 respectively. Cells which exhibit a difference beyond the threshold of +2 standard
deviations from the mean are shown in black. In comparison with the original 'Northness' index map

shown in Figure 5d (bottom right), there are no obvious areas of terrain that are locally susceptible
to uncertainty in the Northness' index.
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In summary, from these tests it is obvious that derivation of the Northness' index for this data set is
not unduly affected by uncertainty in either the terrain or the algorithms used in its calculation.
Differences were detected only in the second and third decimal places of the index value, which is
insignificant considering that only one decimal place is normally used with this index. As for local
variation, it is also obvious that there are no areas of the test site which are more susceptible to
uncertainty than others, even though there is considerable variation in relief. From the user's
perspective, there may well be far greater uncertainty associated with other components of the
vegetation classification process (such as the 1000 m grid resolution), but on the basis of this study
the means by which the 'Northness' index is derived is not a major contributor to the overall
uncertainty of products which may be based upon it.

CONCLUSIONS

In this paper, the authors have presented the design and application of a toolbox that allows
uncertainty to be reported for certain types of spatial database products. The work recognises the
critical need for tools to be developed to assist users in improving their understanding of the quality
of the outputs from their systems. The toolbox has been applied to portray the uncertainty
associated with determining the 'Northness' index for grid cells used when classifying vegetation
communities from remotely sensed imagery. The results of the study show that given the particular
combination of DEM data and algorithms employed, the index is likely to vary only in the second or
third decimal place, which is not of sighificance to users for this particular application. In addition,
no particular areas of the test site appear to be locally susceptible to variation in the parameters used
to calculate the index.

.
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Further Information:

Copies of the toolbox software used in this research may be obtained free of charge upon request
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