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ABSTRACT

In this paper, the authors discuss two techniques for assessing the quality of outputs
from Geographic Information Systems (GIS) when applied to resource management
unc_u._m..:m. It is argued that the advent of mandatory data quality reporting
requirements, and the need to protect the integrity of decisions made by regulatory
agencies using GIS against legal challenges, has bought about a critical need to be able to
assess Mzrmﬂrm_‘ the quality of GIS products meets the quality requirements of the tasks
mou..ei:nr the information is to be employed. This paper presents two case studies in
47_9 »mnr:ﬁ:mm for judging the quality of spatial data products are investigated. In the
first m.:_&s simple probability mapping is employed to communicate the error in
elevation arising from the use of Digital Elevation Models (DEMs). In the second case
study, a more advanced methodology is presented to assess the effect of DEM error on
the terrain corrections applied to remotely sensed imagery in mountainous terrain. It is
suggested that techniques such as these can help GIS users to overcome some of the data
quality reporting problems now being faced. .

INTRODUCTION

An wmmcm. which has become of increasing importance to GIS users in recent years is that
of assessing the quality of their system products. For resource managers, this difficulty is
compounded by the fact that much of the data they routinely deal with applies to
natural phenomena in which the definition of physical boundaries and their associated
attributes is usually highly subjective. As the applications of GIS become more
sophisticated and users become more experienced in this technology’s strengths and
weaknesses, questions are now being increasingly raised as to whether or not the quality
of the outputs necessarily matches the quality requirements of the tasks for which the
derived information is to employed. ,

The reasons for this concern stem from:

(1)  the recent introduction, in many countries, of spatial data transfer standards that
carry a mandatory requirement for data quality reporting;

) nrM rapidly growing view of spatial data as a commercially saleable commodity;
an

(3) the increase in litigation relating to decisions made by agencies in which GIS
products have played a role.
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The third reason, in particular, is causing anxiety amongst regulatory organisations
which see the integrity of their decisions and reputation within the community as being
at stake. For example, in USA the Environmental Protection Agency is responsible for
the Superfund Project in which toxic waste-affected land is identified and legally binding
notices are served on owners of property from which the waste emanates to fund the
clean up process. In some cases, restoration costs amount to hundreds of millions of
dollars and, not unnaturally, most affected owners are challenging the EPA’s decisions
in court. Thus far, the amount of litigation pending has become so great that the EPA
has set aside over $1 billion to cover expected legal defence costs.

What, then, is meant by data quality? Put simply, it can be defined as the ‘fitness for use’
of a particular product to meet a user’s needs for a given purpose, and it requires a
knowledge of the accuracy of the data (that is, the closeness of the observations to the
truth or to measurements which are accepted as being true). The dimensions of the
accuracy issue are now generally accepted as including positional accuracy, attribute
accuracy, logical consistency, completeness and data currency. In the case of positional
accuracy, it may be possible to measure the coordinates of a feature on a map and
compare them with higher order coordinates gained, for example, from detailed ground

survey.
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Attribute accuracy assessments may also be made, for example when verifying landuse
“classifications derived from remotely sensed imagery with the actual landuse on the
ground. For each GIS application, identification of the key accuracy components will
clearly depend on the use to which the data is to put, and while in some cases it is
positional accuracy which is of primary importance to users, in other circumstances
attribute accuracy may be the dominant factor in assessing data quality. Alternatively,
users may be concerned with a combination of several of the five accuracy factors listed
above.

To assist users of spatial data in determining whether a product has the potential to
meet their needs, data producers are now beginning to provide detailed data quality
statements which report on each of these factors. This concept is known as ‘truth in
labelling’, and it is considered (although not well tested in the courts) that if producers
truthfully label products to the best of their ability, then it is reasonable to expect users to
take similar care in studying the information provided before using such products.
Unfortunately,” while this is a step in the right direction towards better quality
assessment, many users are striking difficulty in assessing the fitness for use of
secondary products which may have been created from a variety of data sets from
different sources via the many spatial algorithms and operations now available in
commercial software packages.

In such cases, models of error and a knowledge of the way in which error propagates
through each stage of a product’s creation are required, however at this time there are

" relatively few widely accepted and tested models available for the hundreds of spatial
operations now employed (Goodchild, 1993). Hence, the growing use of the term
‘uncertainty’ to denote the fact that until we possess the required understanding of
spatial data error it is our lack of knowledge which is causing many of the problems
associated with the assessment of product quality.

Clearly, new methods and tools are required to assist users in this area and the paper
presents two methods recently employed by the authors for this purpose. In the first
case study described, an assessment of the elevation error associated with Digital
Elevation Models (DEMs) is presented. It is suggested that simple probability theory,
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when combined with elevation error estimates supplied by data producers, can provide
users with more effective information concerning the quality of their GIS products. The
method adopted is seen as a useful means of helping to convey the meaning of the Root
Mean Square Error (RMSE) statistic currently associated with DEMs.

In the second case study, a model of uncertainty developed by Goodchild, Guoging and
Shiren (1992) has been applied. In general terms, the model can be defined as a
stochastic process capable of generating a population of distorted versions of the same
reality, with each version being a sample from the same population. The traditional
Gaussian model (where the mean of the population is an estimate of the true value and
the standard deviation is a measure of the variation in the observations) is one attempt
at describing error, but it says nothing about the processes by which it has accumulated.
In certain cases where the Gaussian model is not applicable, the proposed model offers”
an alternative solution to assessing uncertainty. Not only does it have the advantage of
showing spatial variation in uncertainty but it includes the effects of error propagation
resulting from the GIS operations that have been applied.

The model permits a data set (such as a DEM) to be perturbed according to an error
descriptor (its RMSE value), and then used for other applications so that different
versions of the same map may be produced. Tt differs from the traditional means of
producing random maps in that it has the capability of taking into account spatial
autocorrelation between cells so that some degree of intuitive ‘truthfulness’ can be
maintained in the realised maps obtained. The model has been applied to an
assessment of the uncertainty of terrain corrections made to remotely sensed images in
mountainous country to account for the effects of shadow and large slope gradient
variations. Until such time as our knowledge of spatial error considerable improves,
the authors suggest that this new model has the potential to greatly assist with quality
assessment in certain situations.

CASE STUDY 1

DEMs are commonly used in resource management for purposes ranging from flood
plain mapping through to classification of vegetation communities and animal habitats.
Errors in elevation can have considerable impact upon the horizontal uncertainty: of
such boundaries. In the problem presented below, the 350m elevation is to be delineated
for the data set described - together with an assessment of its uncertainty.

The data comes from a 448 row by 334 column subset (86%) of the US Geological Survey
(USGS) Digital Elevation Model (DEM) for the 7.5-minute 1:24,000 State College
(Pennsylvania) mapping quadrangle. The total number of cells in the test file is 149,632
with each one measuring 30m x 30m and covering an area of 900m?2 or 0.09ha. The test
site measures approximately 10km by 13km and has considerable variation in elevation,
ranging from 255m in the north to 743m in the south-east. The vertical accuracy of the
DEM used for the tests is quoted by the USGS as being 7m RMSE, which means that the
square root of the average squared difference between the true and observed elevations
at approximately thirty test points in the quadrangle is 7m.

In probability mapping, the likelihood of each grid cell' value exceeding or being
exceeded by a nominated threshold is calculated and used as a means of displaying the
variability of a cell’s elevation. Assuming a Gaussian or Normal distribution of random
error, the concept is illustrated in Figures 1a, b and ¢ where cell (p) is shown with an
observed elevation ANvV and a vertical error estimate (RMSE). The probability of a cell
being greater than the threshold value (Z) can be evaluated by calculating P(Z,>Z) and
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writing the value to a separate file for subsequent display. In Figure la, where Z-Z = 0,
the characteristics of the Normal probability distribution are such that cell c&.rmm a
likelihood of 0.50 (50%) that its true elevation will be greater than the :o::v.mwmm
threshold value, Z. Alternatively, in Figure 1b where Z,-Z = 1x RMSE the _u_.owm.c_:@ is
about 0.16 (16%), and in Figure 1c for Z,~Z = 2 x RMSE the likelihood is approximately

0.025 (2.5%).

P(Zp>Z) = 0.50
P(Zp>Z) = 0.16 \ P(Zp>Z) = 0.025
; Z (threshold)
zp |Cell@p) /
1 x RMSE
zp A 4 '
Ky Cell (p) 2 x RMSE
N
z;
3 PEL Cell (p)

Figure 1a: Zp-Z=0  Figure ib: NmnN =1xRMSE  Figure lc: Zp~Z =2x RMSE

While few GIS have a function that will allow cell probabilities to be mm_nc_mnmn (IDRISI
is an exception), it was found that other means could be just as effectively employed to
achieve the same result. Using the Arc/Info GRID software, the v:.vnmn:qm .mmovan_ was
to first select all cells which contained elevation values within nominated error
distribution limits centred around the threshold elevation (in this case, w.mo.B HN. RMSE,
or 350m +14m). From Figure 1c, it can be deduced that cells selected within this range
have between 2.5% and 97.5% probability of possessing a true ,.S_:m that exceeds 350m.
At this stage, it should be noted that the choice of RMSE limits is noimx?mmmm:mm:_ and
best left to users to determine according to their needs. Next, cells are displayed by
means of shading which is applied so as to gradually vary between nominated extremes
in user defined increments.

In Figure 2a, the 350m contour for the test site is shown as a thick :Jm\.m:vmlavgma
over contours at an interval of 20m. In Figure 2b, cells outside the limits o.n 350m +2
RMSE have been masked in neutral gray colour, and the key _mmmsa at the right of the
image depicts the shade ramp chosen which varies from white (350m - 2 RMSE)
through to black (350m + 2 RMSE). The shade ramp was constructed in 1 metre
increments from 336m through to 364m. In this case, the .mrmmm ramp represents an
answer to the query “Show the probability of a cell exceeding the z_ﬂmrc_m value of
350m”. For further details and colour illustrations of the output (which the authors
believe enhance the visual representation of elevation error) readers are referred to the
paper by Hunter and Goodchild (1994a).

Having visualised the uncertainty in the position of the 350m elevation, the question
remains as to how the information can be applied in practice. From a management

Resource Technology '94 + Melboume -«




[ A
MMMMMMH:%. users must nroomm between either reducing the uncertainty in their data @n For instance, if a critical site is located near the western edge of the image where there
orbing (accepting) it. are large areas of flat terrain with elevations very close to the 350m value, the usual
form of error reduction would be to recollect and reprocess elevation data with a higher
accuracy for the area of interest. Once the uncertainty in delineating the 350m elevation
is satisfactorily reduced, the user must then absorb any remaining uncertainty.
Generally, this occurs by simply accepting the fact that the data will never be perfect and
that there will always be some likelihood of error because of the means by which DEMs
model reality. In other cases, additional factors may be built in to the absorption process.
For example, with reservoir construction a buffer zone is applied around the full supply
: level contour to be certain that no adjoining private or environmentally significant
” lands are inadvertently inundated.
Alternatively, there may need to be a change in the way elevations are perceived by
test site is shown as a thick line, thinking of them in terms of confidence levels. For instance, a user may want the 350m
superimposed over contours at an elevation depicted with a confidence level of 90%, in which case cells with at least a 0.90
interval of 20m. probability of exceeding 350m would be selected (that is, 350m + 1.282 RMSE, or 359m).
’ This concept already occurs in flood plain mapping where it is standard practice to
compute flood levels which; for instance, have a 1% probability of being met or exceeded
in any year (termed a 100-year event). In this case, engineers are able to live with the
uncértainty that occurs in natural phenomena, and it is suggested that GIS users need to
develop similar attitudes to the data they use and the products they develop.

CASE STUDY 2

Figure 2a: The 350m contour for »rwm

The second case study relates to mapping areas burnt by forest fires through the use of
remotely sensed Thematic Mapper (TM) imagery. In rugged terrain in particular, many
researchers have reported the problem of confusion between shadowed and burnt
regions as they both appear the same in most of the bands. In addition, if terrain
corrections are not applied for the. differences in gradient between cells it is difficult to
discriminate between degrees of fire severity, since a given area may seem darker not
because the fire was more intense but because it lies on a slope that receives less light by
area unit.

97.5% (+2rmwe)

Traditionally, DEMs have not been used as part of the assessment for fire severity

SR (¢ trmeet ) mapping, but research at the University of California, Santa Barbara, is underway to
Figure 2b: A probability determine how consideration of topographic effects on the satellite signal may be used
map in answer to the query to counter this problem, which requires a radiance model to be applied to correct (or
“Show the m—.ocmEEw of normalise) the radiance data for terrain differences. Normalised radiance values are

o cells mxnmmm.sm: the 350. already commonly used in other applications of remote sensing in mountainous areas,
threshold value”. and once derived may be used with traditional image analysis techniques such as

supervised and unsupervised image classification, and density slicing.

The test site lies in central Portugal near Pampilhosa da Serra, and a DEM with a cell size
of 30m x 30m was used as the basis for normalisation of the TM imagery. Figure 3a (left)
shows a hill-shaded view of the DEM covering the test site, while the same area is also
delineated on the unclassified TM Band 4 scene in Figure 3b (right), in which the effects
of fire clearly show in the middle of the image as regions of dark gray/black colour. The
Ll 26%- t-2maat portion of the DEM used for this research measures 353 rows by 272 columns (or about
10.6km by 8.2km), with elevations ranging from 287m to 1020m. Unlike DEM data
supplied by the U.S. Geological Survey, an estimate of the elevation error for the DEM is
not available, and so on the advice of researchers familiar with the Portuguese digital
mapping program the standard deviation for elevation error has been estimated to be
10m. .
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Figure 3a (left) showing a hill-shaded view of the test site DEM, and Figure 3b
(right) clearly showing the darker burnt area in the unclassified TM scene.

The traditional procedure used by image analysts is to calculate the sl i

aspect for each cell in the DEM and m_on now:E:m them with the mﬂﬂﬂmﬂ“ﬂﬂﬂ MMM
azimuth angles at the time of image capture (taken from the file header or else
.nm_nimﬁa for the time of day and the latitude and longitude of the site). This
information is used to compute the cosine of the incidence angle, which has values in
:._w range -1.0 to +1.0. Thus, a cell with an aspect equal and opposite to the sun’s
mN_EF.:r (in other words, facing the sun), and a gradient equal to the sun’s zenith angle
(that is, perpendicular to the sun’s rays), will receive the maximum amount of radiance
and have an incidence angle of 0° with a cosine of +1.0. The formula for the cosine of
the incidence angle (i) is given by equation (1).

cos (i) = cos(sun ~m:.=3 * cos(cell gradient) + sin(sun zenith) *
sin(cell gradient) * cos(sun azimuth - cell aspect) (1)

Cells which have an incidence angle cosine equal to or less than zero either lie in a
plane parallel to the direction of the sun’s rays or else are on reverse hill slopes. These
cells are deemed to be in ‘self shadow’ and are not operated on in the traditional
research procedure due to the difficulty of working with diffused light. There is a
mﬂnz_mn process which m.n_mzammm cells that are in ‘cast shadow’ from larger features which
M: Mﬂ“mmnw—_anm—“ﬂmﬁmwﬂﬂ direct sunlight, and these cells also are usually excluded from

The incidence angle cosines for all cells in the DEM are then u

normalising the radiance values of pixels in the TM image, m?mm%nﬂrww ww%MMMM m«m
affected by .:._m nature of the terrain to which it applies. At this point it should be noted
that corrections will have already been made to ensure that both the DEM and the TM
image —.mwm the same geo-referencing and cell/ pixel size. The radiance values (L), being
the raw signals from the image in the range 0 to 255, are then normalised by noa\v:::m
the value they would have if each pixel was horizontal (Ly; ), as in equation (2).
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Ly =Gos(i @
Having discussed the analyst's traditional procedures for deriving normalised radiance
values for each pixel, it is clear there is considerable potential for applying the model
developed by Goodchild et al. (1992) to assess the uncertainty present in the final output,
which would include any effects arising from the DEM elevation error, the algorithms
used to calculate slope gradient and aspect, and the formulae applied to determine the
incidence angle cosines and the normalised radiance value. It should be noted at this
time that the process was halted at the point where realised radiance values are
calculated, however there is no reason why the realisation process could not continue
through to the next stage of analysis of fire severity.

The difference between the traditional approach to calculating the terrain corrected Ly
values and the proposed approach which permits uncertainty to be assessed, can be seen
in Figure 4. The latter technique applies elevation noise files, with varying levels of
spatial autocorrelation (p), to the original DEM to establish corresponding sets of slope
gradient and aspect files for the tést site. Pairs of gradient and aspect realisation files (for
each given p value) are then taken in turn and used to calculate the corresponding
incidence'angle cosine file (i), which is applied to the original TM radiance file (L) used
s for the analysis. The process results in the creation of a family of realised Ly files whose
outputs can then be analysed. The entire process was automated by using a macro
command script and applied using the Arc/Info GRID software. For further details of
this particular case study, readers are referred to the paper by Hunter and Goodchild

(1994b).

The adopted procedure resulted in a set of 10 realised Ly files for each of the p values
0.0, 0.5, 0.10, 0.15, 0.20, 0.21, 0.22, 0.23, 0.24 and 0.245 (the limit of p being 0.25 when taking
into account the four neighbouring cells with sides common to the cell under
consideration). For the purpose of analysis, the 96,016 grid cells in each realised file were
subtracted from their corresponding cells in the criginal Ly file to provide a ‘difference’
file. This difference represents the amount by which the final Ly value might be
expected to vary under terms of uncertainty due to variation in the elevations of the
original DEM and the subsequent series of spatial operations that were performed on the
data.

The mean and standard deviation of each set of 10 difference files was then calculated
for the range of p values applied. The results were plotted graphically and a gradual
increase was observed in the means and standard deviations of the differences as p
varied from 0 to 0.20, followed by a sudden decrease as p approached 0.25. At this stage,
analysis of the results shows that the average greatest difference that might be expected
in Ly values is about 2.5 units with a standard deviation of approximately 13 units.
These extremes occur around p = 0.20. However while such global statistics are useful in
their own right, they say nothing about the spatial variation of the differences and,
accordingly, further analysis was made of the realisations made at p = 0.20.

Taking the 10 realised Ly difference files at p = 0.20, a composite file was calculated and
displayed such that cells with an Ly difference within 2 standard deviations of the
overall mean for the file were shaded as mid-gray colour, while cells with an Ly
difference below and above 2 standard deviations were shaded as white and black colour
respectively. The result is shown in Figure 5a where it can be seen that the white and
black cells, representing outlying values or those most susceptible to the spatial

Resource Technology '94 * Melbourne

6°

i




- \

operations applied, tend to occur on west-facing slopes of north-south ridgelines — when
compared with a hill-shaded view of the test site DEM with contours overlaid at an
interval of 100m (Figure 5c).

1. Traditional Method

Gradient
file
Original
DEM > >

Aspect
file + >

2. Proposed Method

Realised
Gradient
files

Realised

(i} files .
Original Realised
DEM L H fles

+ .
s A s
+ ——
L file

Noise files
with varying Realised
p values Aspect

files

Figure 4: Comparison between the traditional technique of creating the Ly file,
. and the proposed method which provides for assessment of Lyy uncertainty.

The file used in Figure 5a was then hill-shaded from the north-east to communicate
both the size and spatial variation of the differences, and cell values beyond the 2
standard deviation threshold show as a highly disturbed pattern while cells with
differences within the threshold display as relatively smooth gray colour (Figure 5b).
Ore site, in particular, in the top north-east corner of the image contains a significant Ly
difference witnessed by its long shadow extending to the south-west. Given that this file
represents the mean difference value occurring after 10 independent realisations, there
is the suggestion of an anomalous TM radiance value present which warrants closer
inspection of the original data.

figure 5a (top left): Showing the mean Ly
difference file after 10 realisations at p =
0.20, with cells below and above the +2
standard deviation threshold shown as
white and black colour respectively.

Figure 5b (top right): Showing a hill-
shaded view of the Ly difference file used
in Figure 5a, with cells outside the %2
standard deviation threshold showing as
disturbed areas (note the anomaly in the
upper right corner).

Figure 5c (bottom left): Showing a hill-
shaded view of the DEM by comparison
with 100m contours overlaid.

Having illustrated the spatial variation in the uncertainty of the Ly values, further
explanation was sought as to the reason for the apparent correlation between significant
differences in Ly and west-facing slopes. This can be explained by the location of the
sun at the time of the TM image capture, which was at an azimuth of 117° and zenith
angle of 36° (during the middle of the northern hemisphere summer). From this
position, the pixels in shadow are clearly affected the most, which confirms the
problems encountered when working with pixels in diffused light. It was for this reason
that cells found to be in shadow (and thus having an incidence angle cosine < 0) were
not removed from the realisation process, but instead deliberately retained to
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demonstrate any likely susceptibility to variation. Thus, the Bmm._a:m of such pixels
during traditional analysis may be considered a valid approach to the problem. i

USGS, 1990, Digital Elevation Models: Data Users Guide 5, Earth Science Information
Center, U.S. Geological Survey, Department of the Interior, Reston, Virginia, 51

%.

At the same time, it was seen that for the remainder of the image the greatest mean
difference in Ly that might be expected is about 2.5 units with a standard deviation of 13 ' ACKNOWLEDGMENTS
units. It is left to the user of the data to decide whether the tolerances are acceptable for . . hof th
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acceptable then the methodology proposed has confirmed that the particular for Geographic Information and Analysis ( - D8 ‘ ’ B
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combination of DEM and TM imagery; the algorithms for gradient, aspect and incidence

. . : . i ’ h Initiative #7 on Visualisation of the
angle cosine; and the model for terrain correction of Ly value; is suitable for the ! research constitutes part of the Centre’s Research I ! :

purpose intended. On the other hand, if these differences are unacceptable then { Quality of Spatial Data.

uncertainty reduction methods will need to be employed: such as choosing more .

accurate DEM data; selecting alternative algorithms and models; or employing TM

imagery from other epochs. To this end, the realisation process may be repeated using

different combinations of data, algorithms and models to determine which one .

produces the least uncertainty in the final product. .
CONCLUSIONS \

Factors such as mandatory data quality reporting requirements, the increasing view of
spatial data as a commercially saleable commodity, and the need to protect the integrity
of decisions made by regulatory agencies using GIS against legal challenges, have now
bought about a critical need to be able to assess whether the quality of GIS products '
meets the quality requirements of the tasks for which the information is to be employed.
This paper has presented two case studies in which techniques for judging the quality of -
GIS products are investigated. In the first study, simple probability mapping is -
employed to communicate the error in elevation arising from the use of Digital
Elevation Models (DEMs). In the second case study, a more advanced methodology is
presented to assess the effect of DEM error on the terrain corrections applied to remotely
sensed imagery in mountainous terrain. It is suggested that techniques such as these
can help GIS users to overcome some of the data quality reporting problems now being
faced.
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