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DESIGN AND APPLICATION OF A METHODOLOGY FOR
REPORTING UNCERTAINTY IN SPATIAL DATABASES

Abstract: In this paper the authors discuss the design and application
of a methodology that allows uncertainty to be reported in certain
cases for spatial database products. The need for this work has arisen
from the fact that while researchers have spent considerable time,
money and effort investigating the modeling and visualisation of
uncertainty in spatial databases, the results of their labour will not be
recognised until users start applying the techniques in everyday,
operational situations. Accordingly, the authors take the view that
this issue has reached the stage where there is a critical need for tools
to be developed to assist users in improving their understanding of
the quality of output from their systems. This paper describes the
methodology developed, and illustrates its application in a case study
to depict the uncertainty associated with using digital elevation
models to correct remotely sensed imagery employed in assessing
areas burnt by fires in central Portugal.

INTRODUCTION

“We experience difficulties in articulating the quality of information
represented in a database principally because we don’t understand how to
analyse data based on information about its qualities. Even if a database
were to provide us with a feature’s quality attributes along with its shape
and topology, our prevailing tools are usually incapable of modeling most of
its properties, and those procedures we do have are pathetically crude ...”

(Dutton 1984, p. 276)

While researchers have invested considerable resources examining the modeling
and visualisation of uncertainty in spatial databases, the results of their labour
will not be recognised until the user community can apply the techniques in
everyday, operational situations. Thus, the debate about uncertainty has now
reached the stage where there is a critical need for tools to be developed to assist
users in better understanding the output derived from their systems, as
acknowledged in the quotation given above by Dutton (1984). Through such
knowledge they will be placed in an improved position to make data quality




assessments, by comparing the quality of their products against the requirements
of the tasks for which the products are to be used.

Before discussing the various options available for dealing with this problem,
some explanatory remarks are required regarding the use of the term
‘uncertainty’. In general terms, it denotes a lack of sureness or definite
knowledge about an outcome or result, and synonyms include ‘doubt’ (a lack of
certainty witnessed by the inability to make a decision), ‘dubiosity’ (a vagueness
or conceptual confusion), ‘scepticism’ (implying a lack of faith or trust in the
reliability of something), and ‘mistrust’ (a genuine belief based upon suspicion).

In the context of spatial databases, the authors suggest there is a clear distinction
to be made between ‘error’ and ‘uncertainty’, since the former implies that some
degree of knowledge has been attained about differences (and the reasons for
their occurrence) between the results or observations and the truth to which they
pertain. On the other hand, ‘uncertainty’ conveys the fact that it is the lack of
such knowledge which is responsible for hesitancy in accepting those same
results or observations without caution, and often the term ‘error’ is used when it
would be more appropriate to use ‘uncertainty’.

It is well known that there are many potential sources of error in spatial
databases (as discussed in Hunter and Beard, 1992), but because so little is
understood about the way in which those errors (either singly or in conjunction
with each other) affect the outcome of the final products (be they displays, maps,
graphs or reports), there is a resultant uncertainty concerning the level of trust
which should be placed in them. In some ways, the distinction between error
and uncertainty is analogous to the legal belief that a person is ‘innocent until
proven guilty’, since in many cases conceptual models of spatial database error
simply do not exist and it is suggested that until that situation improves,
‘uncertainty’ offers a more appropriate means of describing such lack of proof.
This does not mean that uncertainty should always be substituted for error, as
there already exist several well established and accepted error models for given
spatial operations and they are properly described as such, however in situations
where there is little knowledge of the actual errors involved, as in the case study
described, it is uncertainty which will be referred to by the authors. At this time,
there are three options available (Goodchild, Chih-Chang and Leung, 1993) for
dealing with uncertainty in spatial databases, viz.:

(1) omit all reference to it;
(2) attach some form of descriptor to the output;
(3) show samples from the range of possible maps.

The first approach (the ‘do nothing’ option) treats the problem by ignoring it;
undoubtedly the easiest solution to adopt, but one which potentially places at
risk the reputations of decision-makers (and their agencies) who have to act on
the basis of such information. The second option would see the use of
descriptors such as epsilon bands, misclassification matrices, reliability diagrams,
and root mean square error estimates. In effect, these are a caveat to users and
while they give warnings about product uncertainty they provide little assistance
in showing how the resultant output might spatially vary, although with further
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development they can be more usefully interpreted as Hunter and Goodchild
(1994a) have shown in the case of the root mean square error estimate for Digital
Elevation Models (DEMs). Finally, different versions of the same map might be
presented to users to illustrate the uncertainty their products are subject to due to
the particular combination of data, error estimates, algorithms and process
models which have been chosen for the task.

This latter approach is the one preferred by the authors, since it would appear to
have the greatest potential benefit in both communicating uncertainty and at the
same time educating the user community in the significance of the issue.
Accordingly, this paper discusses the design and application of a methodology
which permits uncertainty reporting for certain types of spatial database
products. By presenting the level of uncertainty which resides in an output, such
a methodology might assist agencies in determining the degree of uncertainty
they are willing to tolerate before it either changes the decisions made on the
basis of that information, or else (in the worst case) causes the benefits of spatial
database usage to be lost. In the reverse role, the methodology could provide
advance testing of different combinations of data, error estimates, algorithms and
models to assess which ones are most likely to suit a user’s needs.

At this stage, the methodology is restricted to the study of grid-cell data and,
specifically, the outputs derived from the use of DEMs, however even in this
limited role it has considerable relevance to natural resource and environmental
applications where the raster data model has greater suitability for representing
inherently continuous variation. In addition, the raster model more easily
accommodates simulation techniques such as those used in this research. The
paper discusses (1) the underlying model of uncertainty employed, (2) its
potential applications, (3) how the model can be integrated into an overall
methodology to handle uncertainty, and finally (4) a case study of its use relating
to the adjustment of remotely sensed data for topographic effects, as applied to
the detection of burnt land in mountainous areas of Central Portugal.

THE UNDERLYING MODEL OF UNCERTAINTY

The basis for the methodology is a version of the model developed to represent
uncertainty by Goodchild, Guoqing and Shiren (1992). In general terms an error
model can be defined as a stochastic process capable of generating a population
of distorted versions of the same reality, with each version being a sample from
the same population. The traditional Gaussian model (where the mean of the
population is an estimate of the true value and the standard deviation is a
measure of the variation in the observations) is one attempt at describing error,
but it says nothing about the processes by which it has accumulated. In cases
where this model is not applicable, and Goodchild (1993) suggests there are less
than a dozen known error models for the hundreds of spatial data processes now
in use, there is simply insufficient knowledge of the errors involved to accurately
model each and every one of them.

Accordingly, the model adopted in this paper satisfies the definition given above
and as such is viewed as an advance on the simple Gaussian model since it has
the ability to show spatial variation in uncertainty. An added advantage of the




model is its ability to include in its realisations, the effects of error propagation
resulting from the algorithms and models that have been applied. By studying
the different versions of the output produced, it is possible to see how differences
in output are affected by variations in the measure of spatial dependence (p). In
a previous paper, Hunter and Goodchild (1994b) argued that while it is possible
to perturb a data set according to an error descriptor (such as an RMSE value)
without consideration of spatial autocorrelation between point sample
elevations, the process may be stochastic but nevertheless lacks ‘truthfulness’ —
since adjacent elevations can be severely distorted creating large pits and peaks
which do not intuitively occur at the resolution of a 30m x 30m grid. This
approach produces what are known as ‘random maps’.

On the other hand, assumption of complete spatial dependence between
neighbouring points produces realisations of the DEM which are ‘truthful’ but
not stochastic, since elevations are constrained to maintain their relative
differences to each other and the introduction of a noise value has the effect of
moving DEM elevations ‘all up’ or ‘all down’ by a constant amount. Hence,
there is a need to find the range of spatial dependence values in the domain 0 < p
< 0.25 which meet the dual requirements of being stochastic as well as ‘truthful’.
The limit of 0.25 ensures stationarity (as discussed in Cliff and Ord, 1981, p. 147)
when the Rook’s case is used to test a cell’s elevation against its four neighbours
sharing a common edge.

By producing distorted versions of the DEM for different p values, and by
studying the change in differences between the realised data and the original
DEM, it is possible to make reasonable deductions as to what the appropriate p
values may be. In the paper referred to previously (Hunter and Goodchild
1994b), separate realisations of slope gradient and aspect values were derived
from a DEM with the latter, in particular, showing a marked change in response
at approximately p = 0.24, while slope gradient only started to significantly vary
from p = 0.20 onwards.

Of course, the realisation process need not stop there, as the different slope
gradient and aspect maps can be input to, say, hydrologic models to produce
alternative realisations of drainage basin parameters, which in turn can be used
to derive realised runoff characteristics. At any stage, the differences between
the realised maps and the original (as produced from the source data without
any consideration of uncertainty) can be analysed to assess the resultant effects.
The attractiveness of this approach is that even though we do not know how
error is being propagated, its effects are nevertheless displayed. Thus, while
there are no quantitative values gained from the proposed approach, the
variations in output which subsequently arise can be clearly seen.

POTENTIAL APPLICATIONS OF THE MODEL

The potential applications of the model lie in four areas. First, the realisation
process may be used to highlight areas of a map which are susceptible to changes
in parameter values. For instance, Hunter and Goodchild (1994b) demonstrated
that the calculation of slope aspect from a DEM was particularly susceptible to
variation in terrain elevation in relatively flat regions while large hillside slopes




remained relatively stable. While such a conclusion is already fairly well
established, this may not always be necessarily so and where complex process
models are applied their effects may still be largely unknown. In other
applications, the observed differences might be used as input to subsequent
sensitivity analyses to understand how changes in parameters impact upon the
decision making process, such as in landuse suitability and capability studies.

Secondly, the technique can be useful in cases where differences per se, are not as
important as assessing the likelihood of a cell’s membership of a particular class.
An example of this can be found in viewshed computations where cells are
computed as being either visible or not visible from a viewing point, and similar
requirements may be made in calculating the extent of drainage basins. Sets of
realisations taken at different p values can be added to compute a ‘score’ for each
cell (together with a mean and standard deviation), which in turn may be used to
calculate the probability of a cell satisfying the criteria associated with the
operation — thereby overcoming the ‘in or out’ Boolean responses normally
associated with spatial databases. Users can thus nominate a confidence level to
be met when assessing the results of the process (for example, ‘cells must have a
90% probability of being seen’).

Another example occurs in soil classification which is often dependent in part
upon slope gradient estimates, in which realisations of a soil map can be
produced based upon previous realisations of the slope gradient map, enabling
users to select cells on the basis of having a given probability of belonging to a
defined gradient range. At the same time, cell class counts (and therefore area
estimates) may be made for a set of realised maps with the mean and standard
deviation of the area being reported to users.

Thirdly, a user might want to display several realisations of a map to understand
the degree of variation associated with the processes involved. For example,
instead of interpolating contours from a DEM just once, several realisations
might be made to assess not only the impact of elevation uncertainty on the
process, but also the variation due to the interpolation procedure itself. This
could also be applied to other raster-to-vector conversion procedures when class
polygons or linear features such as stream patterns are required, thus producing
a family of possible boundaries or linear features.

Finally, simulations can be undertaken to study the effect on map products
where competing data sets, error estimates, algorithms and process models are
available. This ‘reverse engineering’ approach might also be applied by users
who, having already studied several possible realisations of a desired map, and
having identified areas exhibiting levels of uncertainty considered unacceptable,
wish to see how different uncertainty reduction options (for example,
recollecting data at a higher accuracy) would affect the final outcome - before
returning to the field site or purchasing alternative data sets.

A METHODOLOGY TO HANDLE UNCERTAINTY

The methodology to handle uncertainty embodies the model previously
described and is shown in Figure 1. It consists of four steps, with the first one




requiring the user to combine whatever data, processes and models are needed
to generate the desired output - in other words, applying the spatial database as
would normally be done without any consideration of uncertainty. From the
beginning of the procedure, a log or watch file is kept of the commands used
which will later be applied in producing the realisations.

In the second step, the parameters necessary for the realisation process are
determined. By reading system variables associated with the source data file, the
number of rows and columns in the data file, the cell size, and the geo-
referencing details of the data can be ascertained. These will be required later
when the noise files are to be transformed to agree with the actual data set used.

An error estimate for the source data will also need to be identified, and this can
take the form of either a global value for the file, or else a separate field in the
database which may be subject to spatial variation.

At this stage, the watch file of commands may need to be edited by the user to
include only those which were finally applied in the procedure. Any constraints
applied during processing will also be embedded in this file, such as in a
viewshed computation where cells immediately surrounding the viewing point
are usually masked out or held fixed (and therefore assumed to be always seen)
so that their elevations are not perturbed, thereby possibly obscuring large areas
of the view shed.

While not a direct step in the realisation procedure as such, the noise files to be
employed would usually be previously computed and then permanently stored
in the system for future use. The way in which they are generated has already
been described in Hunter and Goodchild (1994b). To date, it has been
considered sufficient for most applications tested for about ten files to be held for
each p value, although users would have the option of creating a greater number
of noise files for specific tasks in the final module of the methodology. The
default p values chosen for the noise files are 0.0, 0.05, 0.10, 0.15, 0.20, 0.21, 0.22,
0.23, 0.24, 0.245, and 0.249.

Again, the user has the option of producing noise files with other p levels in the
final module. As for the maximum value of p offered (0.249), experience has
shown there is little to be gained from using p values higher than this since the
realisation process becomes so constrained that there is no discernible difference
between the realised maps and the original.

In step 3 of the methodology, it is expected that users will want to see a small
number of initial trial realisations and the default range of p values listed above
is applied. A single realisation for each value is performed by first applying the
parameters derived from step 2 to geo-reference and transform the coordinates
of the noise grid. Next, the error estimate (usually an RMSE for DEMs) is
applied to map the noise values from a Normal distribution of N(0,1) to
N(0O,RMSE). This adjusted noise file is added to the source data to produce a
realisation to which the commands employed to create the original output are
applied. The realised maps can be displayed and the differences between the
realisations and the original outputs can be graphed.
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Finally, in step 4 of the procedure the user may choose one or more approaches
for more detailed investigation of product uncertainty, as discussed in the
previous section, and with a greater variety of reporting output products
available.

A CASE STUDY IN ASSESSING UNCERTAINTY

The case study to be discussed relates to mapping areas burnt by forest fires
through the use of remotely sensed Thematic Mapper (TM) imagery. In rugged
areas in particular, many researchers have reported the problem of confusion
between shadowed and burnt regions as they both appear the same in most of
the bands. Similarly, if terrain corrections are not applied it is difficult to
discriminate between differing degrees of fire severity since a given area may
seem darker not because the fire was more intense, but because it lies on a slope
that receives less light by area unit.

Traditionally, DEMs have not been used as part of the assessment for fire
severity mapping, but research at the University of California, Santa Barbara, is
underway to determine how consideration of topographic effects on the satellite
signal may be used to counter this problem, which requires a radiance model to
be applied to correct (or normalise) the radiance data for terrain differences
(Caetano, M., 1993, pers. comm., 16 July 1993). Normalised radiance values are
already commonly used in other applications of remote sensing in mountainous
areas, and once derived may be used with traditional image analysis techniques
such as supervised and unsupervised image classification, and density slicing.

Figure 2a (left) showing a hill-shaded view of the test site DEM, and Figure 2b
(right) clearly showing the darker burnt area in the unclassified TM scene.




The test site lies in central Portugal near Pampilhosa da Serra, and a DEM with a
cell size of 30m x 30m was used as the basis for normalisation of the TM imagery.
Figure 2a (left) shows a hill-shaded view of the DEM covering the test site, while
the same area is also delineated on the unclassified TM Band 4 scene in Figure 2b
(right), in which the effects of fire clearly show in the middle of the image as
regions of dark gray/black colour. The portion of the DEM used for this
research measures 353 rows by 272 columns (or about 10.6 km by 8.2 km), with
elevations ranging from 287m to 1020m. Unlike DEM data supplied by the U.S.
Geological Survey, an estimate of the elevation error for the DEM is not
available, and so on the advice of researchers familiar with the Portuguese
digital mapping program the standard deviation for elevation error has been
estimated to be 10m.

The traditional procedure used by image analysts is to calculate the slope
gradient and aspect for each cell in the DEM and then combine them with the
sun’s zenith and azimuth angles at the time of image capture (taken from the file
header or else calculated for the time of day and the latitude and longitude of the
site). This information is used to compute the cosine of the incidence angle,
which has values in the range -1.0 to +1.0. Thus, a cell with an aspect equal and
opposite to the sun’s azimuth (in other words, facing the sun), and a gradient
equal to the sun’s zenith angle (that is, perpendicular to the sun’s rays), will
receive the maximum amount of radiance and have an incidence angle of 0° with
a cosine of +1.0. The formula for the cosine of the incidence angle (i) is given by
equation (1).

cos (i) = cos(sun zenith) * cos(cell gradient) + sin(sun zenith) *
sin(cell gradient) * cos(sun azimuth - cell aspect) 1)

Cells which have an incidence angle cosine equal to or less than zero either lie in
a plane parallel to the direction of the sun’s rays or else are on reverse hill slopes
(as illustrated in Figure 3). These cells are deemed to be in ‘self shadow’ and are
not operated on in the traditional research procedure due to the difficulty of
working with diffused light. There is a further process which identifies cells that
are in ‘cast shadow’ from larger features which obscure them from direct
sunlight, and these cells also are usually excluded from further calculations.

Direction of Sun

Terrain

Figure 3: Variation in incidence angle (i) with cell position.




The incidence angle cosines for all cells in the DEM are then used as a means of
normalising the radiance values of pixels in the TM image, given that radiance is
affected by the nature of the terrain to which it applies. At this point it should be
noted that corrections will have already been made to ensure that both the DEM
and the TM image have the same geo-referencing and cell/pixel size. The
radiance values (L), being the raw signals from the image in the range 0 to 255,
are then normalised by computing the value they would have if each pixel was
horizontal (L, ), as in equation (2).

L

LH = cos(i)

@)

Having discussed the analyst’s traditional procedures for deriving normalised
radiance values for each pixel, it is clear there is considerable potential for
applying the realisation methodology to assess the uncertainty present in the
final output, which would include any effects arising from the DEM elevation
error, the algorithms used to calculate slope gradient and aspect, and the
formulae applied to determine the incidence angle cosines and the normalised
radiance value. It should be noted at this time that the process was halted at the
point where realised radiance values are calculated, however there is no reason
why the realisation process could not continue through to the next stage of
analysis of fire severity.

The difference between the traditional approach to calculating the terrain
corrected Ly, values and the proposed approach which permits their uncertainty
to be assessed, can be seen in Figure 4. The latter technique applies elevation
noise files, with varying levels of spatial auto correlation, to the original DEM to
establish corresponding sets of slope gradient and aspect files for the test site.
Pairs of gradient and aspect realisation files (for each given p value) are then
taken in turn and used to calculate the corresponding incidence angle cosine file
(i), which is applied to the original TM radiance file (L) used for the analysis.
The process results in the creation of a family of realised L files whose outputs
can then be analysed. The entire process was automated by using a macro
command script and applied using the ARC/INFO GRID software (ESRI, 1992).

The adopted procedure resulted in a set of 10 realised Ly files for each of the p
values 0.0, 0.5, 0.10, 0.15, 0.20, 0.21, 0.22, 0.23, 0.24 and 0.245. For the purpose of
analysis, the 96,016 grid cells in every realised file were subtracted from their
corresponding cells in the original Ly file to provide a “difference” file. This
difference represents the amount by which the final L;; value might be expected
to vary under terms of uncertainty due to variation in the elevations of the
original DEM and the subsequent series of spatial operations that were
performed on the data.

The mean and standard deviations of each set of 10 difference files were then
calculated for the range of p values applied. The results are shown in Figures 5a
and 5b, with a gradual increase noticeable in the mean and standard deviation of
the differences as p varies from 0 to 0.20, followed by sudden decreases as p
approaches 0.25. Figures 5a and 5b therefore represent the results of 96,016 x 10
x 10 (or 9,601,600) individual calculations.
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Figure 4: Comparison between the traditional technique of creating the L;; file,
and the proposed method which provides for assessment of L;; uncertainty.

At this stage, analysis of the results shows that the average greatest difference
that might be expected in L;; values is about 2..5 units with a standard deviation
of approximately 13 units. These extremes occur around p = 0.20. However
while such global statistics are useful in their own right, they say nothing about
the spatial variation of the differences and, accordingly, further analysis was
made of the realisations made at p = 0.20.
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Figure 5a (top) showing the mean difference in L, for each set of 10 realised files
plotted against variation in the spatial auto correlation parameter (p), and Figure
5b showing the standard deviation of the differences for the same sets of 10 files.

Taking the 10 realised L;; difference files at p = 0.20, a composite file was
calculated and displayed such that cells with an L;; difference within 2 standard
deviations of the overall mean for the file were shaded as gray colour, while cells
with an L;; difference below and above 2 standard deviations were shaded as
white and black colour respectively. The result is shown in Figure 6a where it
can be seen that the white and black cells, representing outlying values or those
most susceptible to the spatial operations applied, tend to occur on west-facing
slopes of north-south ridgelines — when compared with a hill-shaded view of the
test site DEM with contours overlaid at an interval of 100m (Figure 6c).

The file used in Figure 6a was then hill-shaded from the north-east to
communicate both the size and spatial variation of the differences, and cell
values beyond the +2 standard deviation threshold show as a highly disturbed
pattern while cells with differences within the threshold display as relatively




smooth gray colour (Figure 6b). One site, in particular, in the top north-east
corner of the image contains a significant L;; difference witnessed by its long
shadow extending to the south-west. Given that this file represents the mean
difference value occurring after 10 independent realisations, there is the
suggestion of either an anomalous DEM elevation or TM radiance value present
which warrants closer inspection of the original data.

Figure 6a (top left): Showing the
mean L, difference file after 10
realisations at p = 0.20, with cells
below and above the +2 standard
deviation threshold shown as white
and black colour respectively.

Figure 6b (top right): Showing a hill-
shaded view of the L; difference file
used in Figure 6a, with cells outside
the +2 standard deviation threshold
showing as disturbed areas (note the
anomaly in the upper right corner).

Figure 6¢c (bottom left): Showing a
hill-shaded view of the DEM by com-
parison with 100m contours overlaid.

Having illustrated the spatial variation in the uncertainty of the Ly values,
further explanation was sought as to the reason for the apparent correlation
between significant differences in Ly; and west-facing slopes. This can be




explained by the location of the sun at the time of the TM image capture, which
was at an azimuth of 117° and a zenith angle of 36° (and during the middle of the
northern hemisphere summer). From this position, the pixels in shadow are
clearly affected the most, which confirms the problems encountered when
working with pixels in diffused light. It was for this reason that cells found to be
in shadow (and thus having an incidence angle cosine < 0) were not removed
from the realisation process, but instead deliberately retained to demonstrate any
likely susceptibility to variation. Thus, the masking of such pixels during
traditional analysis may be considered a valid approach to the problem.

At the same time, it was seen that for the remainder of the image the greatest
mean difference in Ly; that might be expected is about 2..5 units with a standard
deviation of some 13 units. It is left to the user of the data to decide whether the
tolerances are acceptable for the task at hand, and this assessment of product
quality (or fitness for use) forms part of the management approach which needs
to be adopted in such cases. If the variation is acceptable then the methodology
proposed has confirmed that the particular combination of DEM and TM
imagery; the algorithms for gradient, aspect and incidence angle cosine; and the
model for terrain correction of Ly value; is suitable for the purpose intended.

On the other hand, if these differences are unacceptable then uncertainty
reduction methods will need to be employed: such as choosing more accurate
DEM data; selecting alternative algorithms and models; or employing TM
imagery from other epochs. To this end, the realisation process may be repeated
using different combinations of data, algorithms and models to determine which
one produces the least uncertainty in the final product.

At the time of writing, the uncertainty reporting methodology proposed exists
only as a loose collection of macro command files, however work is already
underway using external funding to develop a comprehensive toolbox which
will embody the procedures described, in order that users may more easily
automate the modelling and analysis procedures applied in this research.

CONCLUSIONS

In this paper the authors have presented the design and application of a
methodology that allows uncertainty to be reported in certain cases for spatial
database products. The work recognises the critical need for tools to be
developed to assist users in improving their understanding of the quality of
output from their systems. The methodology has been applied to portray the
uncertainty associated with using digital elevation models to correct remotely
sensed imagery for terrain effects when assessing mountainous areas burnt by
fires in central Portugal. The results of the study show that given the particular
combination of DEM data, algorithms, models, and imagery employed, pixels on
west-facing slopes in shadow are the highly susceptible to variation of the
parameters involved. The procedures that have been applied permit users to
study the uncertainty associated with the final spatial database product derived,
and offer the opportunity for alternative data and algorithms to be tested to
determine which combinations yield uncertainty levels that are acceptable for the
task at hand.
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