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INTRODUCTION

Increasing emphasis on analysis, modelling and decision support within the GIS
applications community in recent years has led to a general concern for issues
of data quality. If the purpose of spatial data handling is to make maps, then
perhaps it is sufficient to require merely that the output map product be as
accurate as the input and to present visualizations of the data as if they were
perfectly accurate and certain. But the detailed analytic and modelling applica-
tions that underlie much of the recent literature of GIS (Tomlin, 1991; Laurini
and Thompson, 1992) demand much more stringent and robust mvmzwwn.—ﬁm. If
the input is known to be inaccurate, uncertain or error-prone, then it is impor-
tant that the effects of such inaccuracies on the output also be known. Without
such knowledge; the apparent value of GIS in supporting spatial mmnmm.moz-iww-
ing may be illusory. Similarly, it is important that the user be fully informed
about data quality, and the most effective way to do this may be by some
method of visual communication. In this sense, the arguments for visualization
of data quality in GIS seem much stronger than in cartography, .wan_ perhaps
explain why there are so few techniques for data quality display in the carto-
graphic tradition.

As noted in Chapter 15, uncertainty in spatial databases has many sources,
not all of which are captured by the terms ‘error’ and ‘inaccuracy’. The con-
tents of the database can differ from the truth, or from some source of higher
accuracy, because of the effects of abstraction in the B»_u-..:m_aam process,
through generalization, abstraction, exaggeration, simplification or n_umm&_nm-
tion. All of these create forms of uncertainty for the analyst, and in principle it
is desirable to be able to measure, or at least perceive, their effects.

Although inaccuracy is pervasive in spatial data, some types of data are n_w»-.-
ly less accurate than others. A GPS (Global Positioning System) survey vnoimom
known levels of positional accuracy, potentially down to the nearest centime-
tre. We focus in this chapter on a class of data known to be subject to relatively
high levels of uncertainty, and for which there are no such straightforward
measures of accuracy. In this class, every point on the plane is characterised by
a single value measured on a nominal or multinomial scale; examples .mnn_m:_o
soil class, land cover class and land use. We refer to this as a multinomial field
and such fields are often displayed by chorochromatic, or k-colour, maps. Two
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data models are commonly used to build digital representations of such fields.
The first, the raster model, is used when the field is obtained by remote sens-
ing, by making use of one of a number of standard procedures for classifica-
tion. In this model, spatial variation is represented through an array of
rectangular cells or pixels, and all information on within-pixel variability is
lost. The second, or polygon model, partitions the plane into a number of poly-
gons of arbitrary shape but homogeneous class, thus losing all variability within
polygons. The polygon model is also commonly used in making maps of multi-
nomial fields, although the boundary lines on such maps are drawn as contina-
ous curves, and will be discretised as polygons, with straight line segments
between vertices, only when the lines are digitised,

Both models are clearly approximations. In the raster model, all variation
over distances less than the cell size is lost, and cell size is therefore a conve-

. nient descriptor of positional accuracy. The accuracy of the map as a whole is

also determined in part by the selection of classes, since in reality, soils or land
cover variation is only approximately described by a fixed, finite number of
classes, and there will always be within-class variation in the real world which
the map purports to represent. In the polygon model, variation within poly-
gons is lost, but polygons are not fixed in size and so there is no simple mea-
sure of positional accuracy to compare to the cell size of the raster model. In
practice, positional accuracy is often quoted as boundary width, typically
0.5mm, but although boundaries may be drawn with thin lines, the actual
width of transition zones in reality may be much larger, and such measures fail
to capture the positional uncertainty attributable to a lack of homogeneity
within polygons. A better alternative is to derive a measure of positional accu-
racy from the area of the smallest mapped polygon, or ‘minimum mapping
unit’, since patches smaller than this must have been ignored. A suitable mea-
sure is the diameter of a circle of area equal to the minimum mapping unit.

By itself, a measure of positional accuracy does little to capture the inherent
uncertainty in raster or polygon representations of multinomial fields. It fails to
deal with the problem of within-class variability, or variation over distances
less than the positional accuracy of the data. Recently, GIS researchers have
begun to turn to concepts of fuzzy classification to provide a more versatile
approach to characterising uncertainty, and fuzzy classifiers have become popu-
lar sources for error descriptors and error models. The objective of this chapter
is to illustrate a number of methods for visualizing this particular approach to
uncertainty in multinomial fields. In the raster case, fuzzy classifiers provide a
means of describing uncertainty, by associating each pixel not with a single
class, but with a vector of class memberships, each one interpreted as a mea-
sure of belonging. Thus pixel x’s degree of belonging in class i might be denot-
ed by n(x), and the vector of class memberships might be written:

{m(x), m,(),..., m,(x)}

where # is the number of classes.

In the polygon case, inaccuracy occurs in the form of variation within poly-
gons, perhaps at the edges where boundaries are merely approximations to
zones of transition (Mark and Csillag, 1989), or perhaps centrally where small
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inclusions and islands of different classes have not been mapped because they
fall below the minimum mapping unit area. Neither of these issues is dealt with
effectively by giving the polygon a fuzzy class membership. Instead, it is neces-
sary to abandon the polygon model because it is fundamentally unable to serve
as an adequate basis for representing within-polygon variation. Instead, we see
the geometry of the polygon model as an artifact of the mapping process, hav-
ing little value in an effective approach to data quality, and transform to the
raster model. Thus both heterogeneity of polygon class and transition near the
boundary are represented through the use of pixel class memberships.

While the concept of fuzzy pixel classification is a familiar feature of the
remote sensing literature, there has been very little research on its visualization,
or on the processing of such data within GIS. In part this may be because of
concerns over data volume, since # memberships must be stored for each pixel,
rather than one integer between 1 and ». In practice, however, it is rare for
more than two class memberships to be significantly greater than zero in any
one pixel. Fuzzy-classified scenes are difficult to visualize for similar reasons,
because the objective in principle would be to communicate # memberships to
the user per pixel. Moreover it is not clear how measurements such as class
area can be made from such data. Thus despite the availability of fuzzy classi-
fiers, and the greater information content of fuzzy-classified scenes, it is tempt-
ing to convert such data to a simple maximum likelithood classification on the
grounds that the latter are much easier to handle. As a result, estimates of the
area of a given class are biased, and the user viewing a maximum likelihood
display is given a falsely optimistic impression of successful classification.

In cartography, a polygon with fuzzy or mixed classification is sométimes
shown filled with bars of alternating colours, corresponding to the two classes'
that are mixed in the polygon. The use of bars of constant width and straight
parallel sides allows the eye to distinguish correctly between true boundaries,
which have generally complex shapes, and the artificial boundaries formed by
the bars. However the method is effectively limited to mixtures of two classes,
and becomes confusing if more than a small proportion of polygons are mixed,
and there is still the risk that the uninformed user will misunderstand the
convention.

The purpose of this chapter is to discuss methods of visualization and pro-
cessing for fizzy-classified maps and scenes within GIS. We include with this
term not only the results of fuzzy classification in remote sensing, but also
derivatives of the polygon model where each pixel is associated with a mixture
of classes} or with probabilities of class membership. The next section discusses
the meaning of such data from a statistical perspective, and introduces the
chapter’s'error model. This is followed by a description of the environment for
visualization of fuzzy-classified scenes developed by the authors. The final sum-
mary disusses directions for future research. Sections of the chapter draw on
Leung, O_oomn_:_m and Lin (1992).

ves PROBABILISTIC PERSPECTIVE
i
Consider a raster in which each pixel is associated with a vector of class mem-
berships.i The various possible sources of this data were discussed in the previ-
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ous section. To provide a probabilistic interpretation, we assume that the mem-
berships are normalized by pixel:

- _T(x)
P() |M_.akxv

Thus Py(x) is interpreted as the probability that pixel x belongs to class i out of
the n classes, This might be understood in a mixed pixel context as the propot-
tion of pixel x’s area that is of class i; or the proportion of interpreters who
would have assigned the pixel’s area to class i; or the proportion of pixels with
the same spectral response as x that are truly i; or in a seasonal sense as the
proportion of the year during which the pixel should be assigned to class i
rather than some other class. Numerous other interpretations are possible.

We define the term multinomial probability field (MPF) as a vector field

~ whose value at any point is a normalised vector of class membership probabili-

ties of length #. In other words, the database can be queried to determine, for
any point (x,y), the probabilities that point belongs to any of classes 1 through
n. A raster provides a suitable way of creating an acceptable approximation of
such a field in a digital database, with a spatial resolution defined by the cell
size.

Although a display of pixels showing the membership in each class is infor-
mative, it nevertheless fails to convey an impression of uncertainty, suggesting
that memberships are expressions of deterministic knowledge, rather than of
lack of knowledge, or of fuzziness. Instead, we focus on class memberships as
descriptions of uncertainty, and on the range of possible maps that might
therefore exist. In other words, and using the terms defined in the introduction
to this section, the fuzzy class memberships become parameters of an error
model, and the range of possibilities is defined by realisations of that model.
Goodchild, Sun and Yang (1992) define an error model in the context of spa-
tial databases as “a stochastic process capable of generating distorted versions of
the same reality’. The best known error model is the Gaussian, used to describe
uncertainty in measurements of a simple scalar quantity like the elevation at a
point. Each of the outcomes of such an error model provides one possible ver-
sion of the truth, as it might be interpreted by one soil scientist, or as it might
be digitised by one operator. Thus we see a map as a collection of interdepen-
dent measurements, and an error model for maps as a means of generating sim-
ulations of alternative maps within the error model’s inherent range of
uncertainty in those measurements. One realisation of a map error model
might be one scientist’s interpretation of variation in land cover over a given
area, or one digitiser operator’s effort to capture the contents of a given map.

Goodchild, Sun and Yang (1992) describe an error model for an MPF. Each
realisation is a map in which each pixel is assigned to a single class. The model’s
two essential properties are:

(a) between realisations, the proportion of times pixel x is assigned to class i
approaches P(x) as the number of realisations becomes large; and

(b) within realisations, the ontcomes in neighbouring pixels are correlated, the
degree of correlation being controlled by a spatial dependence parameter p.

When the spatial dependence parameter is zero, outcomes are independent in

161




L)
f

M. GOODCHILD, L. CHIH-CHANG & Y. LEUNG

each pixel. This is the case illustrated by Fisher (1991b). However, this is
almost certainly unrealistic since few if any real processes are likely to create
such independent outcomes. As the parameter increases, outcomes are correlat-
ed over longer and longer distances. One suitable interpretation of this is that
larger and larger inclusions within polygons are ignored, or fall below the min-
imum mapping unit area.

For example, consider an agricultural field of 100ha, captured as a raster
database with a cell size of 0.01ha (10m square). A soil map of the field might
include four classes, with significant uncertainty because of fuzzy boundaries
between classes, inclusions, etc. Because the pixel size of 1ha has no connection
with any process of soil formation or development, it is next to impossible that
the true class will be independent in neighbouring pixels. Instead, we expect
neighbouring pixels to have strongly correlated classes, and inclusions to extend
over distances substantially more than 10m. On the other hand, while there may
be uncertainty over the crop grown in the field, it is certain that the field has
only one crop. Spatial dependence is so strong in this case that in any realisation
of the error model, the entire agricultural field can have only one class.

Many commonly used descriptions of map error fail to meet the requirements
of an error model, since they fall short of the complete specification of a sto-
chastic process. Such descriptions include the width of an epsilon band, the
measures mandated by many map accuracy standards, the statistics of the mis-
classification matrix used in remote sensing, and the reliability diagram found
on many topographic maps. All of these are useful error descriptors, but fall
short of being useful error models. Neither is there a useful connection between
many such descriptors and the necessary parameters of error models. For exam-
ple, it is not possible to connect the parameters in the model described above
with such measures s positional accuracy of polygon boundaries, or per-poly-
gon misclassification of attributes. Visualization is perhaps the only way of over-
coming this conceptual barrier, since it allows us to connect the model and its
parameters with their implications in the form of simple pictures.

ToOLS FOR VISUALIZATION

In this section we describe the tools we have developed for visualization of
MPFs. These techniques include some designed to display the descriptors of
error (parameters of the error model) and others designed to generate and dis-
play realisations of the error model. As we argued in the first section, classifica-
tion procedures are important for remotely sensed imagery, but it is also
desirable to be able to visualize MPFs from sources such as land cover maps in
which the classification is performed by other means. For this reason, the sys-
tem is modular in design, and includes a classification module, display module,
and modules for data manipulation. Only the display modules are discussed
here (for additional details see Leung, Goodchild and Lin, 1992). The system is
interactive and uses a graphic user interface, all instructions and operations
being triggered by selecting appropriate screen buttons. Windows are opened
and closed as appropriate. It has been developed in C and X Windows for the
IBM RS/6000 under the AIX operating system.
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In the display module, images can be displayed directly by associating colours
with spectral bands without classification, in order to support direct visualiza-
tion of the preclassified scene. However the most important component of the
module supports the display of classified images. In general, techniques of
dithering and bit-mapping can be used to display uncertainty in terms of levels
of class membership, to expose the spatial variation in membership within
regions or across region boundaries. In addition the system provides several
other measures and methods for conveying information about an MPF to the
user. The following sections briefly describe and illustrate the principal tools.

The illustrations, Plates 17 to 20, are derived from a Landsat TM scene for
an area to the west of Santa Barbara, California. For the purpose of illustra-
tion, the scene was classified using only three classes, identified as water, vege-
tation and soil. Since these clearly do not characterise the full range of spectral
responses, pixel fuzzy memberships tend to be relatively low and mixed. This
somewhat artificial classification example produces artifacts which are the sub-
ject of comment below.

UNCLASSIFIED IMAGE

Colours can be assigned to spectral bands to create conventional false-colour
representations of the unclassified scene. This allows the user to see the raw
data before classification.

CLASSIFIED IMAGE

The RGB (red/green/blue) colour model is used to display the results generated
by the fuzzy classifier, or input from some other source. Each class is associated
with a point in RGB space, and each vector of class memberships is mapped to
an intermediate point in the colour space by linear interpolation. This method
is successful for two classes (7=2) provided the pure-class colours are chosen
carefully, but it is difficult for the eye to decode the results for n=3, and for
#>3 the mapping from class membership vector to colour space is no longer
unique. Moreover mapping is non-unique for #=3 if the class memberships
have not been normalized to sum to 1 (see previous section).

Plate 17 shows a display of the image using this approach assigning water to
blue, vegetation to green and soil to red. Although all of the information con-
tained in the fuzzy memberships is displayed in this rendering, it is virtually
impossible for the eye and brain to deconvolute the linear mixing of colours. On
the other hand, this may be a useful display if the user merely wishes to identify
the memberships associated with a given pixel; the bars at the top of the image
display the RGB components of the pixel currently selected by the cursor.

To deal with the difficulty of visualizing membership in many classes, it is
possible to display each class’s memberships separately using a grey scale. By
using multiple windows one can display the general distribution of each class
for up to four or even six classes simultaneously. Plate 18 shows the member-
ships for the three classes water, vegetation and soil in the upper left, lower left
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and upper right windows respectively. While these are easier to interpret than
Plate 17, the displays convey no collective sense of a pixel’s memberships.

Sometimes it is desirable to have a non-fuzzy image of a fuzzy scene. A sim-
ple defuzzing mechanism is maximum likelihood, where the displayed class
f(x)=i if m(x)>m(x) for all i, j, i not equal to j; that is, a pixel is assigned to
class i (and displayed with class i’s colour) if its degree of membership in class i
is highest of all its memberships. The user has control over the colours assigned
to each class. Frequency distributions of the entire image can be displayed, and
the user can zoom into a selected area, or display the contents of any pixel.

AREA !

! I
Calculation of the area occupied by each class is 2 common GIS function. For
conventionally classified scenes or other forms of raster data it is calculated by
counting the pixels assigned to each class and multiplying by pixel area. How-
ever the solution is less clear in the case of fuzzy-classified scenes. If P(x) is
interpreted as the proportion of pixel x that is truly class i, as in a mixed pixel
interpretation of 'fuzziness, then the area of class i will be the sum of such frac-
tions added over the scene. On the other hand if P,(x) is interpreted probabilis-
tically, the samg estimate must be interpreted as the expected area of class i.
Similar approaches are appropriate if P(x) is given other probabilistic interpre-
tations. Thus the calculation of area on a fuzzy-classified scene seems adequate-
ly addressed by calculating:

|

A=bLP(x)

N .
where b is the area of each raster cell. Note that this estimate may be very dif-
ferent from the conventional one based on maximum likelihood, that is,

A*=b T fx)

More difficult is the estimation of error variance, standard etror, or the
uncertainty asspciated with such estimates. In the mixed pixel interpretation A,
is deterministic, 'with zero uncertainty. In a probabilistic interpretation, and
assuming that outcomes in each pixel are independent of outcomes in neigh-
bouring pixels (zero spatial dependence) then the uncertainty associated with
area estimates can be determined from the statistics of the binomial distribution
in the form of a standard error:

‘
v

¢,=b(Z,P,(x)[1 - P(x)})"’
where ¢, is the root mean square uncertainty in estimate A,. Fisher (1991) used
Monte Carlo simulation to estimate this standard error. When spatial depen-
dence is present, as it almost always is, and outcomes in neighbouring pixels
are correlated, it is necessary to resort to the methods described by Goodchild,
Sun and Yang (1992).
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ENTROPY

The degree of certainty in a pixel’s classification can be measured in various
ways, but one that expresses the degree to which membership is concentrated
in a particular class, rather than spread over a number of classes, is the infor-
mation statistic or entropy measure:

1
log.n

H(x)= 2P(x)log.P,(x)

where H(x) is the entropy associated with pixel x. H(x) varies from 0 (one class
has probability 1, all others have probability 0) to 1 (all classes have probability
equal to 1/n). The systém allows a map of H to be displayed using a grey scale;
light areas have high certainty (probability concentrated in one class) while
dark areas have low certainty.

The distribution of the entropy statistic for the Santa Barbara scene is shown
in Plate 19. Clearly evident is the ocean turbidity off Point Arguello, where
mixing of currents produces substantial reduction in the membership of the
water class, and thus an increasing level of entropy in these pixels. In general
the ocean is dark because of its high membership in the water class, but the
land pixels are much more mixed and thus lighter in this rendering, Some of
the greatest levels of uncertainty are in pixels located in the Town of Lompoc,
because urban is not a recognised class.

The degree of fuzziness associated with membership in each class can be
assessed by another form of the entropy measure:

1
= NTogez Z-{P()log )+ [1 - P()llog.[1 - P()]}

where the sum is now over the pixels and N is the number of pixels. Entropy is
zero if the probability of membership in class i is 0 or 1 in all pixels, and 1 if
probability is 0.5 in all pixels. The overall entropy H of the entire fuzzy scene
can be obtained by adding these measures over all classes.

REALISATIONS

As noted earlier, an important aspect of visualizing uncertainty is the ability to
view individual realisations of an error model, rather than its parameters. All of
the previously noted methods display some aspect of the probability vectors,
which are the parameters of the error model’s stochastic process, rather than
its ontcomes. Viewing a display of probability vectors necessarily diverts atten-
tion from the variation between realisations, and focuses more on the average
or expected case.

The system includes the ability to display realisations of the error model,
using user-determined levels of spatial dependence. Goodchild, Sun and Yang
(1992) discuss possible methods for determining appropriate levels, as attributes
of the entire map, or of individual classes, or of geographic regions. A display of
four or six different realisations in different windows on the screen provides

165




M. GOODCHILD, L, CHIH-CHANG & Y. LEUNG

graphic illustration of the implications of uncertainty in spatial data, and draws
attention to its influence on analysis, modelling and decision-making.

Plate 20 shows a series of realisations of the Santa Barbara scene, using prob-
abilities computed by normalising class memberships. Each of the four images
shows a different value of spatial dependence p, ranging from 0.20 in the
upper left to 0.25 in the lower right. In reality, spatial dependence is certainly a
function of class, and probably also varies regionally. However each illustration
represents a realisation under a uniform value of p.

The most obvious visnal effect of the spatial dependence parameter is shown
in the sizes of inclusions. As p approaches 0.25, inclusions become larger, as
illustrated by the large blobs in the ocean in the lower right illustration. The
lower class membership for water around Point Arguello have produced a
higher density of inclusions. When compared to Plate 17, these illustrations
demonstrate the sharp difference between the two approaches to display of
uncertainty: the parameters of the error model in the form of class member-
ships (Plate 17) and realisations of the model as a stochastic process (Plate 20).

SUMMARY AND FUTURE DIRECTIONS

It is often argued in the GIS community that while uncertainty is endemic to
spatial data and undoubtedly affects the outcomes of spatial data processing, it
is best not to draw attention to it because of its complexity and potentially
damaging effects on decision-making. The user ‘does not want to know’. Anal-
ogous software systems, such as the statistical packages and database manage-
ment systems, do not include techniques for capturing, storing and
manipulating ‘txplicit information on uncertainty, so why should GIS? We
believe that this argument is both intellectually unsound and disastrously short-
sighted. Most spatial decisions, particularly important ones, are made in an
environment of conflict and controversy. As GIS matures and becomes avail-
able to more and more patties to a debate, the naive view that the party with
the GIS somehow carries greater weight will become less and less realistic, and
easier and easier to attack. Pressures for better quality assurance and control
are already emerging from instances of GIS-related litigation.

In the context provided by a stochastic error model, the user of an error-
handling GIS has three alternatives. First, displays can omit all reference to
uncertainty by showing the most likely class for each pixel. This is the most
commonly encountered option, and has pervaded GIS to date, particularly in
its applications to the spatial distribution of environmental parameters such as
soil class or land cover class. Second, displays can inform the user about uncer-
tainty through error descriptors, or through the parameters of error models.
This option is represented here by the display of class membership probabili-
ties. Finally, the user can be shown samples from the range of possible maps in
the form of simulations under the error model. The differences between these
three options are striking, and immediately suggestive. Realisations draw atten-
tion to the effects of error, and may be much more meaningful to a user who
lacks a full understanding of the concepts of statistics. On the other hand, the
arguments that have sustained a lack of attention to uncertainty in cartographic
tradition — the desire not to confuse the process of communication, and a will-
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ingness to portray the world as simpler than it really is — presumably apply here
also. We hope these illustrations, and those provided in the next chapter, will
stimulate debate on these important issues. What impact can the use of these
options have on the process of spatial decision-making, and where is each
option most useful?

Spatial statistics is a complex and difficult field, and few GIS practitioners
have more than an elementary understanding of its techniques and concepts.
Moreover visual techniques are inherently convincing and communicative,
Thus it seems that visualization will have to be a fundamental part of any con-
certed effort to handle uncertainty within GIS. Goodchild, Sun and Yang
(1992) have argued that visualization is the key to user participation in the
determination of the key spatial dependence parameters in spatial statistical
models of uncertdinty. In the case of the error model used in this chapter, visu-
alization holds the key to involving mapping specialists in the determination of
appropriate values of the spatial dependence parameter p.

An MPF is inherently multidimensional, and this chapter has presented a
number of techniques for improving the uset’s ability to understand this partic-
ular form of spatial variation. However any communication system must satisfy
the requirements of the user as much as it exploits the capabilities of the sys-
tem, and it seems clear to us that an ideal design can only come from the expe-
rience of working with these tools in a real analytic environment.
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