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ABSTRACT

Many natural forms can be successfully simulated using fractals. We argue that fractals
can therefore provide useful models of natural forms in the absence of specific effects and
constraints: in effect, null hypotheses for natural forms. The fractional Brownian process
is a useful sirulation for terrain and offers a method of determining the characteristics of
channel networks formed by random processes. We simulate random channel networks
and tabulate the statistical distributions of various parameters. The chapter demonstrates
that recently observed departures from the random topology model of Shreve are attribut-
able to the geometric constraints imposed by packing networks onto a topographic sur-
face, and not to geologic and geomorphic controls, as previously supposed.

INTRODUCTION

Hypothesis testing is a powerful strategy in science, particularly in areas where data are
subject to substantial uncertainty. Suppose that observations suggest the presence of an
effect E. If E is not the only effect present, then it is not capable of accounting fully for the
observed variation in the data. The general strategy is to consider what would have hap-
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pened in the absence of effect E. By comparing this hypothetical outcome with the real
one, we may succeed in proving the presence or absence of the effect. We term the hypo-
thetical process in the absence of effect E the null hypothesis or Hy. The strategy has its
limitations: it does not evaluate the strength of effect E, merely its existence; if the effect
is weak, it may be masked by other sources of variation (termed a Type Il statistical error);
and other sources of variation may cause us to falsely conclude the presence of the effect
(Type I statistical error). In addition, it may be difficult to formulate an appropriate null
hypothesis.

Suppose, for example, that we wish to investigate the effect of age on voting behav-
ior. Two samples, one of Republican voters and the other of Democrats, would each show
variation in age, but the ages in the two sets would not be the same, and the means would
likely be somewhat different. In the absence of the effect of interest (that is, under the null
hypothesis), both samples would be drawn from the same population. But if the effect is
real, the population of Democrats would be expected to have a different distribution of
ages from the population of Republicans.

Many common forms of hypothesis testing involve very simple null hypotheses and
standard testing procedures. However, in some cases the null hypothesis is sufficiently
complex or mathematically difficult that, while it is easy enough to state, the only way of
investigating its outcomes is by simulation. In such cases the general form of the approach
is as follows. An effect is suspected, and data are collected. A null hypothesis is stated, and
simulation is used to generate a sample of its outcomes. These are compared to the data. If
the data are found to be a possible outcome under the null hypothesis, then the effect is
declared to be absent. On the other hand, if the data are inconsistent with the outcomes of
the simulation, then the effect is declared to be confirmed.

In this chapter, we examine the use of this strategy with a fractal null hypothesis and

-simulation process to test an important issue concerning stream networks. The complex

patterns formed by branching streams fall into the general class of graphs known as trees.
Horton (1945) introduced an ordering and numbering scheme for stream networks that
was later refined by Strahler (1952), as follows. Each tributary stream (the leafs of the tree
network) is order 1; the joining of two order 1 streams forms an order 2; and in general the
joining of two order i streams forms an order i + 1. Joining of an order { stream with an
order j stream (i #j) produces a stream of order equal to the larger of i and j. The order of
the stream forming the root of the tree becomes the order of the basin. There is now a large
literature on the analysis of ordered channel networks, much of it prompted by the early
work of Horton. Of particular concern here is what is now known as the Horton law of
stream numbers: if the logarithm of the number of streams of given order is plotted against
the order for a network or collection of networks, the points fall close to a straight line.
Although the effect represented by the Horton law is dramatic, we might neverthe-
less wish to confirm it by a hypothesis test. For bivariate plots, the conventional form of
the null hypothesis proposes that the observed values of one variable have no effect on the
corresponding values of the other. Although we would almost certainly reject the null
hypothesis in this case, confirming the existence of the Horton law, this particular null
hypothesis is clearly inappropriate, as it is impossible for the number of streams to be
unrelated to order, given the system of ordering: the number of streams of order i can be
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no more than one-half the number of order i - 1. We can therefore reject this particular null
hypothesis out of hand.

The objective of this chapter is to propose a more appropriate null hypothesis for
channel networks and to test its outcomes using fractal simulation. The model is a signifi-
cant departure from one proposed by Shreve (1966, 1967), described below, which has
been the focus of much research in channel networks over the past two decades. Our
model accounts for several consistent and puzzling deviations from the Shreve model
observed in stream networks.

More generally, the chapter illustrates the value of fractal models as null hypotheses
for a whole range of natural systems (Goodchild, 1988). Mandelbrot (1982a) has argued
very convincingly that fractals are a useful model of natural systems. But many geomor-
phologists find the fractal simulations of terrain in Mandelbrot's book too artificial (Mark
and Aronson, 1984). Self-affine landscape simulations lack the scale-specific effects of
geology and landscape-modifying processes such as wind, rain, and glaciation that pro-
vide visual cues as to scale. However, Goodchild and Mark (1987) argue that this lack can
be an advantage, in the sense that fractal simulations provide a test-bed for geomorphic
processes—an initial or boundary condition landscape on which to simulate the effects of
real processes. In general, fractal simulations are a powerful way of visualizing and ana-
lyzing what would be expected in the absence of real effects or constraints on natural
- form.

THE SHREVE MODEL

In the Shreve model of channel network topology (Shreve 1966, 1967), all networks are
assumed to be part of an infinite topologically random channel network (TRCN) in which
all possible alternative channel network topologies occur with equal probability. There
are, for example, five topologically distinct ways in which four first-order streams can
combine, four yielding second-order basins and one a third-order basin (Figure 6.1).
According to the Shreve model, the five arrangements should be found with equal likeli-
hood in real stream basins. The model has been remarkably successful at explaining the
Horton law of stream number, as it predicts not only the observation of straight-line plots,
but also the slopes (the ratio of the number of streams of order i - 1 to the number of order
i is known as the bifurcation ratio, and is constant for a straight-line plot). It has also been
extended with success to certain geometrical properties of channel networks, such as link
lengths and basin areas (Shreve, 1975).

In the hypothesis testing tradition of statistics, the Shreve model is a null hypothesis,
reflecting what would be expected to occur under a simple random process. Thus, if
empirical data are found to be consistent with the model, the normal inference would be
that the basin or basins from which the data were obtained evolved in a way that was
largely free of geological or other constraints on the random combination of streams. On
the other hand, deviations from the model's predictions would be interpreted as indicative
of the operation of such effects.

Unfortunately, standard hypothesis-testing procedures provide only a weak test of
the model, since confirmation of a null hypothesis amounts to no more than a failure to
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reject. The likelihood of a Type II statistical error, or acceptance of the null hypothesis
when in fact it is false, depends both on sample size and on the strength of the effect. In
other words, large amounts of data are needed to demonstrate small deviations from the
model: the smaller the amount of data available, the more likely is the confirmation of the
null hypothesis. Understandably, then, early small-scale empirical tests largely confirmed
the predictions of the infinite TRCN model.

A recent paper by Abrahams (1984) undertook a comprehensive review of the field
and identified a growing consensus on systematic empirical departures from the model.
For large basins (magnitude M >50, where magnitude is defined as the number of first-
order streams), there is a tendency for bifurcation ratios (and thus slopes of Horton law
plots) to exceed predictions, particularly in areas of high relief. First-order streams can be
classified as § (soyree) or TS (tributary source) depending on whether they join to other
streams of order 1 or to streams of order greater than 1, respectively (in Figure 6.1, the
four second-order basins have two S and two TS links, while the third-order basin has four
S links and no TS links). In theory, the proportion of 7 links should tend to 50% in very
large basins, but in real networks the proportion appears to be higher than expected (net-
works with a high proportion of 7S links are said to have fishbone topologies). Abrahams
(1977) found a strong correlation between the amount of deviation from the model and the
relative relief of the topography.

Abrahams (1984, p.164) finds a pattern emerging in empirical results, that “small
channel networks fit the model better than large ones.” Under the hypothesis-testing
framework in which a failure to reject the null hypothesis is often equated with confirma-
tion of the stochastic model, we are tempted to look for explanations of this pattern in ero-
sion processes. But a simpler explanation, suggested by the comments above, is that the
null hypothesis is not precisely correct and has been accepted for small data sets because
of the greater probability of Type II errors.

1 1 1 1 1\/1
1 0 1 0 0 1

1 0 0 1 1\0
0 0 0

0101011 =53, 0010111 =27, 0100111 =47, 0001111 =17, 0011011=334

Figure 6.1 The five alternative (topologically distinct) channel networks generated by four first-order
streams. The notation denotes the coding schemes for networks and ambilateral classes.
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Although much early research supported the random topology model, it is quite pos-
sible, given the remarks above, that a reexamination of earlier data would reveal much
more widespread disagreement. For example, Smart (1969, pp.1766~1767) analyzed a
total of 1157 basins of magnitude 4 (four first-order streams, five possible topologies, see
Figure 6.1) and 629 of magnitude 6 (six first-order streams, 42 possible topologies) in a
study of the topologies of U.S. networks, separated into eastern and western samples.
Although the Shreve random topology model was accepted as a null hypothesis at the 0.05
level in three out of the four analyses, in all cases the data show a bias consistent with
those discussed by Abrahams and analyzed later in this paper, which if real would presum-
ably have led to rejection of the null hypothesis given a sufficiently large sample. Smart
regarded the results of his analysis as inconsistent, because the null hypothesis was
accepted in only three cases, and looked for an explanation in terms of structural controls.
Given the work summarized by Abrahams, the alternative explanation of a real bias and
three Type II errors seems much more acceptable.

The more straightforward and conventional implication of these results is that there
are processes operating on the landscape, in the form perhaps of geological controls, that
prevent or bias the random joining of streams, assigning unequal probabilities to certain
alternative topologies and resulting in deviations from the model. Clearly, this is an appro-
priate inference if the model is itself an appropriate null hypothesis and describes correctly
the result of random, uninhibited channel network development. However, this is not nec-
essarily the case. Streams developing on a real terrain are subject to constraints of a purely
geometrical origin, which will undoubtedly affect the relative likelihoods of alternative
topologies. First, basins must pack onto the surface, leading to dependencies between the
geometries of adjacent basins, which will in turn affect their topologies. A second class of
geometrical constraints is introduced by the requirement of continuity in the surface,
which forces dependencies between flow directions of neighboring streams. In principle,
then, since all topologies cannot be equally likely if networks are forced to pack onto a
surface, the Shreve null hypothesis cannot be true and we can reject it out of hand.

‘We term a null hypothesis appropriate if it differs from reality only in the absence of
the effect of interest, in this case geologic or other control on channel network develop-
ment, so the implications of rejection are clear and unambiguous. An inappropriate null
‘hypothesis is one that differs from reality in several additional ways, so that rejection may
be due either to the effect of interest or to one or more of the additional, irrelevant effects.
In this sense, the Shreve model is an inappropriate null hypothesis if indeed the develop-
ment of an infinite TRCN on real terrain would be inhibited by constraints of a purely geo-
metrical nature. A null hypothesis that failed to include such constraints would be
inappropriate, as it would not allow us to separate out the effects of geometrical con-
straints, which are uninteresting from a geological or geomorphological perspective.

The effect of geometrical constraints on the random topology model is unknown,
and it is unlikely that a more appropriate null hypothesis would be amenable to mathemat-
ical analysis. The approach used in this paper has been to simulate the random develop-
ment of stream networks on surfaces under a broad range of conditions. If agreement is
found with the infinite TRCN model, then the implication will be that real deviations are
due to additional, geological or other forms of control over network development. On the
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other hand, deviations observed in the simulations will tend to confirm the inappropriate-
ness of the Shreve model as a channel network null hypothesis. Finally, if the form of the
simulated deviation agrees with observed deviations in real networks, the implication will
be that the origin of such deviations lies in geometrical constraints rather than in physical
processes. Earlier results from this study appeared in Goodchild et al. (1985).

e
14

FRACTIONAL BROWNIAN MOTION

There have been several previous simulations of random channel development on sur-
faces. Leopold and Langbein (1962), Schenck (1963), and others allowed streams to wan-
der randomly over a square lattice, generating a move at each lattice cell from a random
integer corresponding to one of four move directions (we refer to four move directions as
the rook’s case, to distinguish it from the queen's case of eight move directions, including
four diagonal moves). Special means had to be devised to avoid topological inconsisten-
cies such as closed loops and spirals. The packing constraint is imposed in these models in
the form of a uniform density of one stream move per cell: the elimination of loops and
spirals has the effect of a weak surface continuity constraint. Seginer (1969) imposed a
stronger continuity constraint by first generating a random surface and then extracting the
stream network from it, thus ensuring topological consistency. The initial random surface
consisted of a square grid of independent elevations, characterized by frequent pits and no
general trend. A study by Craig (1980) of simulated erosion processes on surfaces
extracted stream networks and compared them to the random topology model as a means
of validation of the simulation process, a dubious procedure given the known departures
of real networks from the model.

A much more appropriate means of generating suitable random surfaces is available
in a class of stochastic processes known as fractional Brownian motion (fBm). Their use
for terrain simulation was first explored by Mandelbrot (1977, 1982a) and has attracted
considerable attention, due at least partly to striking computer-generated iilustrations.
More significantly, fBm surfaces have several attractive features that make them suitable
for the purposes of this study. The variogram of an fBm surface has the form

Elz(x) -z(x +d)1* = kld*# | (6.1)

where x denotes a location, d is a displacement from this location, z is the elevation of the
surface at location x, E is the statistical expectation, |d| is the length of the displacement d,
k is a constant, and H is a parameter in the range 0 to 1. H = 0 corresponds to independent
elevations and thus an infinitely rugged surface with no trend, while as H tends to 1 sur-
faces become locally smoother with stronger general trend. H = 0.5 corresponds to
Brownian motion, in which the difference in elevation between adjacent points has a prob-
ability distribution that is symmetrical about zero.

Because of the power law form of the variogram, fBm surfaces are scale free and
termed self-affine: a small piece of the surface if sufficiently enlarged is statistically indis-
tinguishable from the surface as a whole. Since most if not all geomorphological processes
are scale dependent, having different amounts of influence on the landscape at different
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scales, fBm surfaces appear to lack evidence of erosion. So, by extracting drainage net-
works from fBm surfaces of varying H, we can simulate network development under a
broad range of surface conditions and subject to packing and continuity constraints.
Kirkby (1985) used a fractal surface as the random, erosion-free starting point for simula-
tions of slope and stream evolution.

There have been several comparisons between the fBm model and real terrain.
Goodchild (1982) examined the topography of Random Island, Newfoundland, and found
deviations from self-similarity that could be interpreted in terms of the varying influence
of geomorphological processes. Mark and Aronson (1984) reached similar conclusions in
their analyses of areas in the eastern United States. fBm surfaces have equal abundances
of peaks and pits; rugged surfaces of low H, with high peak and pit frequencies, are conse-
quently more suggestive of karst or dead ice topographies than real, eroded terrain.

The surfaces used in the study (Figure 6.2) consisted of square arrays of 256 by 256
elevations, generated by the method described by Mandelbrot (1977) in which an initially
flat surface is faulted along randomly located, straight lines. For H=0.5, the surface on
either side of each fault is displaced upward or downward by a constant amount; for other
values of H a nonuniform displacement is used. This method was adopted in preference to
the more commonly used algorithm of Fournier et al. (1982) because of Mandelbrot's the-
oretical objections to the latter (Mandelbrot, 1982b). A total of 1000 faults was applied to
each surface to ensure a high probability that at least one fault occurred between every
pair of adjacent elevations. No scaling was applied to the elevations, since both the self-
similarity properties and the process of network extraction are invariant under linear trans-
formation. Surfaces were generated with values of H ranging from 0.3 to 0.7 in steps of
0.1. Three replications of the 0.7 surface were generated because this value of H was
thought by Mandelbrot to give the closest resembiance to certain real terrains. Figure 6.2
shows examples of fBm surfaces for values of H ranging from 0.3 to 0.9.

DRAINAGE NETWORK EXTRACTION

fBm surfaces have no eroded stream channels, so the derivation of channel networks must
be based on local terrain slopes. O'Callaghan and Mark (1984) have described the extrac-
tion of networks under similar conditions from real digital elevation models, and see also
Jensen (1985). In their algorithm, each cell may flow to one of eight queen's case neigh-
bors; in this study moves were restricted to the four rook’s case neighbors because of the
problems that would be introduced by allowing up to seven streams to join at once.

Each cell was assigned an integer between 0 and 4 according to the following rules.
If any of the four neighboring cells were strictly lower, flow was to the lowest neighbor,
designated by an integer between 1 and 4. Otherwise, the cell was designated a sink and
assigned 0. This is termed the deterministic or D assignment.

Several objections can be raised to this simple approach. First, it assigns precisely
one channel flow direction to each cell, whereas real channels are observed to develop
only after the accumulation of a sufficient amount of nonchannel flow. We allow for this
by the truncated or T assignment, which modifies the networks obtained under assignment
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Figure 6.2 Self-affine surfaces generated by the fractional Brownian process with H ranging from 0.3 to 0.9
(D=3-H).
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D above by deleting downstream from each first-order stream head until a certain mini-
mum flow level is reached, measured by the number of upstream cells (see also Mark,
1983; Hugus and Mark, 1984; O'Callaghan and Mark, 1984). Thus, the T assignment
assumes a certain threshold-contributing upstream area before a channel can develop. This
process can result in the deletion of junctions and redesignation of stream orders.

Second, the use of a limited set of move directions introduces a potential bias in
flow direction. Consider an area of uniform slope. In reality all streams would flow in the
direction of maximum gradient without joining. Under the D assignment, all streams

“would flow without joining in the permitted move direction closest to the direction of

maximum gradient, introducing a consistent bias of up to 45°. The random or R assign-
ment allows for this through the following rules:

If no neighbor is strictly lower, the cell is a pit.

Else if exactly one is lower, flow is in that direction,
or if exactly two are lower and in opposite directions, flow is to the lowest,
or if exactly two are lower and in neighboring directions, or more than two are
lower, assign direction based on probabilities proportional to the differences
in elevation between the cell and the lower neighbors.

The R assignment also deals to some extent with a third problem. Because of the
self-similarity property, fBm surfaces vary within-cells as well as between them, although
the use of a discrete array has the effect of deleting within-cell variation. The consequent
straightening of derived channels within cells reduces the probability of joining. The R
rules compensate for this by allowing streams to join even in areas of uniform slope.

The problem of the edge was dealt with in all cases by adding a border of cells with
very high elevations. This ensured that flow either sank at the edge of the 256 by 256 array
or flowed inward from it, but never outward.

Channel networks were obtained from the integer arrays in the form of binary
strings (Shreve, 1967; Scheidegger, 1967). In our implementation, the binary string repre-
sentation of each basin is computed by traversing the tree beginning and ending at the
root, or outlet stream, in a clockwise or left to right direction, turning left at every intersec-
tion and reversing direction at every leaf or source stream. A 0 is encoded every time a
junction is encountered from downstream and a 1 every time a leaf or source stream is
reached. This binary notation provides a unique coding for every possible network topol-
ogy, in which the number of 1s is one more than the number of Os and that always termi-
nates in a 1. Furthermore, at any point before the end of the string the number of 1s is less
than or equal to the number of Os. Figure 6.1 demonstrates the coding scheme with the five
topologies of magnitude M = 4.

The literature on channel networks has consistently assumed all junctions to be three
valent, consisting of one outlet and two inlet streams, whereas the method of network
extraction described above will frequently produce four-valent junctions where three
inflowing streams merge to form one outflowing stream. The extraction algorithm allowed
for this by breaking all four-valent junctions into two three-valent junctions plus a dummy
link. To avoid favoring certain topologies, breaks were made randomly, the two alterna-
tives being given equal probabilities. This is illustrated in Figure 6.3. Suppose the eleva-
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tions predict that flow is into the central cell from the lef\t} from above and from the right,
and that outflow is downward, thus creating a four-valent junction (this could be the result
if the cells to the left, above, and to the right had higher elevations, and the cell below had
a lower elevation). The letters a, b, and c in Figure 6.3 denote the binary strings describing
the three subbasins upstream of the junction. Figure 6.3 shows the two equally likely net-
works created by randomly breaking the junction of four streams into two junctions of
three streams each. The results reported earlier (Goodchild et al., 1985) did not randomize
the breaking of four-valent junctions and were limited to the D method of flow assign-
ment.

Channel-length information was encoded in the form of a second string of the same
length, giving the length of the link downstream of each junction for each 0 in the binary
string and the length of the source link for each 1.

All analyses of the basins were carried out by manipulations of these pairs of
strings. Stream order was defined using the Strahler (1952) system and obtained with the
following algorithm (see also Liao and Scheidegger, 1968). Replace all instances of Oxx in
the string by x +1 (x not equal to 0), and increment a counter for the number of streams of
order x +1 by 1. Replace all instances of Oxy, x not equal to y and neither x nor y equal to 0,
by the greater of x and y. This process must terminate with a single digit equal to the order
of the basin.

b
’Lc
8 w——
b o5
L 4
9 0albc
a c b
,0,0.5
a—_—\
N c
l 00abc

Figure 63 A four-valent junction and the two equiprobable pairs of three-valent junctions derived from it.
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ANALYSIS: D ASSIGNMENT

Under the extraction rules described above, a basin is defined as a tree network rooted or
terminating in a sink. This has no direct equivalent in the infinite TRCN model, since all
links are part of one infinitely large, singly rooted tree. A randomly chosen basin in the
infinite TRCN model is best defined as the subbasin rooted in and upstream of a randomly
chosen link. However, we might assume that the basins in the simulation have arisen by a
process in which any link in the model is equally likely to become a sink. This would
allow us to compare the abundances of basins by order in the simulation with the known
probabilities that a randomly chosen basin or subbasin in the model is of order w. The rel-
ative abundances of basins by order under the D assignment rules are shown in Table 6.1.

TABLE 6.1 Abundances of Basins by Order

H 1 2 3 4 5 Total
03 14363 4,949 642 1 0 19,955
0.4 10,646 4,502 806 5 0 15,959
0.5 7,524 3,589 827 16 0 11,956
0.6 3,900 2,130 751 40 1 6,822
0.7a 621 380 178 50 9 1,238
0.7b 1,543 808 383 56 4 2,794
0.7 1,801 1009 458 68 0 3,336

The infinite TRCN model predicts that the number of basins of order i be half the
number of order i -1. This is clearly more nearly true of the smoother surfaces of high H
than of the more rugged, low H surfaces with much more frequent pits. Although basins
on the smoother surfaces reach higher orders, there is clearly severe truncation, which
may be due to limitations on the abundances of high-magnitude basins or to the relative
infrequency of basins of high order for a given magnitude. The latter interpretation is more
likely for the high H surfaces where pits are much less common.

The analysis of relative abundances of streams and links on the simulated surfaces is
similarly affected by the presence of pits, since the infinite TRCN model is again con-
cerned with a randomly chosen feature in an infinite network. The simulations show simi-
lar overabundances of low-order streams and links, particularly on the more rugged
surfaces, and truncation at higher orders.

In the infinite TRCN model, all possible topologies of basins of a given magnitude
are equally likely. Table 6.2 shows the relative abundances of the five possible topologies
of magnitude 4 basins (basins with four first-order streams; see Figure 6.1). Each basin
topology is identified by the octal representation of its binary string; thus, the string
0001111 becomes basin 17. Note that in this and subsequent analyses in this paper, a basin




2L NETWORKS

‘twork rooted or
model, since all
sen basin in the
n of a randomly
1ave arisen by a
‘nk. This would
with the known
srder w. The rel-
~n in Table 6.1.

Total

19,955
15,959
11,956
6,822
1,238
2,794
3,336

ler i be half the
faces of high H
\lthough basins
meation, which
r to the relative
retation is more

.ated surfaces is
1 is again con-
‘ons show simi-
2 more rugged

iven magnitude
sible topologies
.1). Each basin
hus, the string
8 paper, a basin

ANALYSIS: D ASSIGNMENT ) 133

is defined as terminating in a sink; subbasins of a given magnitude that might exist embed-
ded in basins of larger magnitude are not included in the sample.

TABLE 6.2 Abundances of Topologies for Magnitude 4 Basins

H 17 27 33 47 53 Total
0.3 110 150 178 126 163 727
0.4 128 157 170 158 137 750
0.5 118 131 115 119 113 596
0.6 66 87 63 77 64 357

072 10 17 7 7 14 55
0.7b 37 30 20 26 29 142
0.7¢ 31 33 26 30 43 163

The clearest trend in the table is that shown by basin 33, or 0011011, which is over-
abundant for the rugged H = 0.3 and H = 0.4 surfaces and underabundant for the remain-
der, although only the H = 0.3 results are significantly different from the model predictions
at the 0.05 level on a chi-squared test. Basin 33 is unique in the magnitude 4 basins as the
only one of third-order. As noted earlier, the second-order basins, 17, 27, 47, and 53, have
been loosely referred to as fishbone topologies in the literature, as a high proportion of
first-order streams, in these cases 50%, join streams of a higher order (TS or tributary
source links). In the case of basin 33, all first-order streams join other first-order streams
(S or source links). We will informally refer to the degree to which a basin approximates a
fishbone form as its linearity and use the proportion of 7S links as a more objective mea-
sure.

Two topologies are said to be of the same ambilateral class (Smart, 1969) if one can
be obtained from the other by exchanging the two subbasins incident at one or more junc-
tions, in effect removing the distinction between left and right. In Figure 6.1, basins 17,
27, 47, and 53 are all of the same ambilateral class, but cannot be transformed into basin
33 by mirroring at junctions. Smart first suggested aggregation to ambilateral classes as a
means of reducing the number of alternative topologies in high-magnitude basins, while
retaining the significant hydrological differences between classes (Smart, 1969, p.1761).
In addition, all members of one ambilateral class clearly share the same proportions of S
and TS links, and therefore the same degree of linearity, or similarity to a fishbone form.

To identify a basin's ambilateral class, each 0, or junction, in the basin's binary string
is examined. The two subbasins incident at the junction are described by two consecutive
blocks of binary code immediately following the O and can be identified from the rule that
any subbasin must have exactly one more 1 than it has Os. The binary representations of
the two subbasins are compared numerically and, if necessary, switched so that the first
has a numerical value less than or equal to the second. When all junctions have been
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examined in this way, the binary string will have been reduced to that of a common ambi-
lateral class. For example, consider the basin 00111 (basin 7, magnitude 3). The first junc-
tion has incident subbasins 011 and 1. Since the first is greater in value than the second,
they are reversed, giving the string 01011. The second 0 has symmetrical incident subba-
sins, 1 and 1, so no reversal is necessary, and the ambilateral class is identified as 13, the
octal representation of 01011.

The magnitude 5 basins, for which there are 14 possible topologies and 3 ambilat-
eral classes, are shown tabulated by ambilateral class in Table 6.3. The most linear topol-

ogy, in this case class 253, which has 60% TS links, is overabundant for all surfaces and
significantly so in all but one.

TABLE 6.3 Abundances of Basins by Ambilateral Class, M = 5

H 233 153 253 Chi squared

0.3 26 1292 2529 20.8°
0.4 33 124* 2212 10.7°
0.5 28 93 246° 19.0°
0.6 19 64 1943 21.6°
0.7a 2 7 328 7.6
0.7b 3 21 632 11.3°
0.7¢ 5 30 . 832 12.3°

Model probability 2/14 4/14 8/14

Proportion TS links 20% 20% 60%

a. Denotes observed abundance exceeds model predictions.
b. Denotes significant at the 0.05 level

The pattern for magnitude 6 basins, shown in Table 6.4, is similar, as is the analysis
of magnitude 7 basins. In both cases there is increasing bias toward the most linear topol-
ogies, 1253 and 5253, respectively, with increasing H. In Table 6.4, it is evident that 553 is
also overabundant on all surfaces but one. Since 553 has the same proportion of 7S links
as three other ambilateral classes, it is clear that the proportion of 7§ links is not a com-
pletely satisfactory predictor. Basin 553 is symmetrical, with two linear subbasins (01011)
meeting at the top of the root link.

In general, basin order and proportion of TS links are inversely related; as Table 6.4
shows, the most linear basins are also those of lowest order. The overabundance of linear
basins thus has the effect of truncating the distribution of basin orders so that fewer high-
order basins are found than expected under the infinite TRCN model. '
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TABLE 6.4 Abundances of Basins by Ambilateral Class, M = 6

H 633 1233 553 1153 653 1253  Chi squared
0.3 4 15 182 26 362 822 7.4
0.4 6 20 332 37 542 1022 10.7
0.5 2 14 25 28 36 1232 323
0.6 0 7 182 26 20 1052 42.8°
0.7a 1 2 3 4 2 202 o
0.7b 0 6 92 11 8 533 23.0°
0.7c 2 5 88 7 12 492 17.4°

Model probability 2/42 4/42 4/42 8/42 8/42 16/42
Proportion TS links 0/6 26 2/6 2/6 2/6 4/6
Basin order 3 3 3 3 3 2

a. Denotes overabundant.
b. Denotes significant at the 0.05 level.
c. Denotes chi squared not computable due to small numbers.

Table 6.5 shows the proportions of TS links observed in basins of magnitude 4
through 20, compared to the proportions expected under the model, for three of the sur-
faces. It is easy to identify TS links in a basin's binary string since the two 1s in any
sequence 011 are S links and all other 1s are TS. The expected proportions in the model are
given by (M-2)/(2M-3), which is asymptotic to 0.5 as M tends to infinity (Mock, 1971).
In the limit, the probability that a randomly chosen bit is a 1 in the infinitely long basin
string is 0.5, and each bit is independent of its neighbors. There are eight equiprobable
sequences of the two bits preceding and the one bit following the 1, four of which dictate
that the 1 denote an § link and four a 7§ link:

0010, 75 0011, § 0110, § o111, S
1010, 7S 1011, § 1110, 7S 1111, TS

Table 6.5 shows that the observed proportion of 7S links is generally higher than
expected, and increasingly so with increasing basin magnitude and increasing H.

Finally, we tabulate the bifurcation ratios for these three surfaces and for basin mag-
nitudes 4 through 20 in Table 6.6. The ratios are calculated in two ways. B0 is the (i - 1)th
root of the number of first-order streams, where i denotes the basin order, while B1 is the
ratio of first-order to second-order streams. For given magnitude, the model predicts bifur-
cation ratios close to 4.0. Instead, observed ratios tend to be higher than 4.0, particularly
on surfaces of high H, BI is consistently higher than B0 and both tend to increase with
increasing magnitude.
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TABLE 6.5 Observed and Expected Proportions of TS Links

H=03 H=05 H=0.7a
M Expected n Observed n Observed n Observed
4 0.400 727 37.8 596 40.4 S5 43.6
5 0.429 407 448 367 46.8 41 512
6 0.444 181 477 228 51.0 32 531
7 0.455 120 514 194 51.7 32 61.6
8 0.462 69 46.7 125 53.6 24 573
9 0.467 4 54.0 94 54.4 13 62.4
10 0471 18 55.6 56 55.0 13 66.2
11 0.474 13 58.0 46 569 12 63.6
12 0476 3 556 28 53.0 7 73.8
13 0.478 4 50.0 29 53.8 14 62.6
14 0.480 2 35.7 14 56.1 7 75.5
15 0.482 0 17 53.7 7 63.8
16 0.483 1 62.5 11 54.5 11 67.0
17 0.484 0 4 58.8 11 65.8
18 0.485 2 55.6 3 51.9 4 69.4
19 0.486 0 5 60.0 8 68.4
20 0.487 0 2 60.0 4 72.5

ANALYSIS: TAND R ASSIGNMENTS

The above analyses were repeated using the T assignment, truncating each stream down-
stream from the head until the flow from a prescribed number of cells F had been accumu-
lated. This minimum number of cells was set to 1, 2, and then 5, and results were
compared in each case to those obtained under the D assignment.

Truncation tends to delete large numbers of small first-order basins and to reduce the
order of larger basins. For F =1, the model was rejected as a predictor of the relative abun-
dances of the five M =4 topologies (compare Table 6.2) for all surfaces except H=0.7¢c, in
all cases due to the underabundance of basin 33 and the overabundance of the linear topol-
ogies. The most linear ambilateral class was overabundant in every case where chi squared
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could be calculated for every surface and for each of M =4, 5, 6, and 7. Observed propor-
tions of TS links tended to be higher for given magnitudes than those shown in Table 6.5,
and bifurcation ratios higher than those in Table 6.6. Although sample sizes were substan-
tially lower, the same trends were observed for increasing truncation at F =2 and F =5. In
summary, truncation produces increasing divergence from the model.

TABLE 6.6 Bifurcation Ratios by Basin Magnitude

H=03 H=0.5 H=0.7a
M n BO BI n BO BI n BO BI
4 727 351 351 596 361 3.6l 55 375 375
5 407 395 405 367 4090 418 41 439 445
6 181 406 434 228 436 461 32 467 484
7 120 417 467 194 424 471 32 . 550  5.80
8 69 343 414 125 415 487 24 498 550
9 4 436 513 94 389 487 13 531 612
10 18 468 542 56 451 527 13 632 705
11 13 391 529 46 396 520 12 460  6.11
12 3 346 467 28 342 457 7 834 914
13 4 329 444 29 417 517 14 428 588
14 2 374 315 14 355 483 7 667 9.0
15 0 ’ 17 354 469 7 367 589
16 1 400 533 1 373 470 11 400 659
17 0 4 412 531 11 412 631
18 2 424 480 3 424 450 4 424 113
19 0 S 436 519 8 436 653
20 0 2 447 583 4 447 192

By increasing the probability of streams joining, the R assignment tends to increase
basin order. Larger numbers of order 5 basins were obtained compared to Table 6.1, and
the H =0.7b and H =0.7c¢ surfaces produced order 6 basins. For the magnitude 4 ambilat-
eral classes, surfaces H =0.6, H =0.7a, and H =0.7b showed overabundance of the linear
class, but the remaining four surfaces showed underabundance. For magnitude 5, the most
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linear class, 253, was overabundant for all surfaces except H =0.3, and similarly for mag-
nitude 6, the linear classes were overabundant for all except H =0.3 and H =0.4. Propor-
tions of TS links and bifurcations ratios tended to be higher than expected, although again
not to the same degree as with the D and T assignments, and the differences again tended
to increase with increasing magnitude. As we might expect, then, by increasing the proba-
bility of joining, randomization tends to reduce the linearity of the extracted basins, but
not sufficiently to produce consistency with the infinite TRCN model.

DISCUSSION

The simulated networks derived from fBm surfaces under a range of assignment rules
show significant deviations from the infinite TRCN model. These deviations agree in
many ways with those identified by previous empirical research and summarized by Abra-
hams (1984). Furthermore, there is evidence that a reexamination of data previously inter-
preted as supporting the random model would also show deviations of the same type,
although not sufficiently strong or based on sufficiently large sample sizes to cause rejec-
tion of the model.

More specifically, the analysis has identified the following grounds for rejection of
the random model:

1. Ambilateral classes for magnitude 4 through 7 basins do not occur with predicted
frequencies: instead most surfaces show a bias toward classes with linear or fish-
bone form, low order, and high proportions of 75 links. The bias is strongest with
smoother surfaces of high H.

2. The proportion of TS links is higher than expected for basins of magnitude 4
through 20, and the deviation increases with magnitude and with the parameter H.

3. There is a tendency for both evaluations of the bifurcation ratio to exceed model
predictions. BI tends to be higher than B0, and the bias increases with basin mag-
nitude and with H.

There are other forms of observed deviation from the model, such as asymmetry and
the distributions of cis and trans links, whose interpretation is quite different and that are
not therefore relevant to this paper.

In his 1966 paper, Shreve proposed the hypothesis that “in the absence of geologic
controls a natural population of channel networks will be topologically random” (Shreve,
1966, p.27). Subsequent research has tended to foillow the same paradigm, interpreting
deviation from the model as due to the influence of geologic factors and acceptance of the
null hypothesis as confirming their absence. Abrahams (1984, p.162) identifies the first of
the underlying postulates of the random topology model as “In the absence of environ-
mental controls, channel networks are topologically random.”

We have argued in this paper that the packing of channel networks onto a continuous
topographical surface imposes additional constraints of a purely geometrical nature, rais-
ing the possibility of a second basis for rejection of the model. Given this alternative inter-
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pretation, the model becomes an inappropriate null hypothesis for testing for the presence
or absence of geologic controls. Many results that have previously been taken as confirm-
ing the model can be reinterpreted as failing to reject it simply because of inadequate sam-
ple size. ’

It would be very difficult to devise a more appropriate null hypothesis because of the
wide range of possible packing and continuity conditions. The scale-free fBm surfaces
used in this study provide continuity conditions ranging from extreme ruggedness to local
smoothness and thus possess a reasonable degree of generality. Quite different constraints
might be imposed by surfaces with strong scale-dependent or periodic variation, such as
glaciated landscapes, or surfaces with regional variation in smoothness. It is evident from
the results obtained above that much stronger biases are imposed by packing basins onto
relatively smooth surfaces of high H than onto rugged ones.

Another source of difficulty lies in the presence of pits on the fBm surfaces. At low
H, with high pit frequencies, we suspect that removing downstream drains from the sur-
face, as in a karst landscape, has the effect of reducing the severity of packing constraints,
which may account for the smaller divergences observed from the random model on these
surfaces. The assignment rules used in these experiments to simulate channel development
may also be unrealistic. Real channels modify their own landscapes, perhaps in ways that
affect the operation of packing and continuity constraints. In summary, although they are
useful for illustrative purposes, fBm surfaces are not sufficiently general that we would
argue for their use in a more appropriate null hypothesis.

We would agree therefore with the conclusion reached by Abrahams (1984, p.185)
that, despite commonly observed deviations, “the random model will continue to serve as
a standard against which to compare natural channel networks.” However, it is not neces-
sarily true that deviations from the model indicate the operation of geologic constraints.
Furthermore, it is demonstrable by simulation that channel networks simulated on a wide
range of random surfaces are constrained so as to deviate significantly from the random
model, irrespective of geologic or environmental constraints. It is therefore difficult to see
how acceptance of the model or, more correctly, failure to reject can be interpreted as any-
thing other than a Type II statistical error; equally, it would be difficult to place an
unequivocal interpretation on a rejection.

Finally, we hope this chapter has demonstrated the value of fractal simulations, not
only in providing interesting visual effects, but also in providing standards and models for
investigating a wide range of physical effects. There are numerous instances in science
where it is necessary to compare reality to some hypothetical version in which a given
effect is absent, but often we have no clear notion of what that hypothetical version might
be. Fractal simulations provide precisely that, particularly, as we have demonstrated in this
chapter, in the case of topography. fBm is useful both as a starting point for simulating the
effects of landform processes and also as a null hypothesis in investigating the effects pro-
duced by those processes.
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