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Abstract

Fuzzy classification has the potential to yield richer
information from remotely sensed images, but there
have been few efforts to deal with the issues involved
in working with fuzzy classifications in GIS.
Analogous data are also obtained when the multinomial
classification given to land is treated as mixed, fuzzy or
probabilistic. The paper reports on a series of efforts o
develop visualization techniques for such data. To
support visualization of the inherent variability in such
data, and to propagate uncertainty effectively through
GIS operations, it is necessary to introduce the concept
of an error model as a stochastic process, and to define
a method for creating individual realizations of that
process.

Introduction

Increasing emphasis on analysis, modeling and decision
support within the GIS applications community in
recent years has led to a general concern for issues of
data quality. If the purpose of spatial data handling is
to make maps, then perhaps it is sufficient to require
merely that the output map product be as accurate as
the input. But the detailed analytic and modeling
applications that underlie much of the recent literature
of GIS (Tomlin, 1991; Laurini and Thompson, 1992)
demand much more stringent and robust approaches. If
the input is known to be inaccurate, uncertain or error-
prone, then it is important that the effects of such
inaccuracies on the output also be known. Without
such knowledge, the apparent value of GIS in
supporting spatial decision-making may be illusory.

In this paper we take the position that all geographic
information is inaccurate to some degree, because it is
impossible to represent the continuous variation of the
Earth's surface perfectly in the finite, discrete space of a
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digital store. We use the term ‘accuracy’ generically, i

and assume that it subsumes error from a variety of
sources: uncertainty of definition, imperfect replication
between observers making subjective judgments, the
consequences of mixed pixels in remote sensing,
digitizing error etc. A spatial database is a
representation of geographical reality in digital form,
and the output of a GIS process is an estimate of the
results of making an equivalent measurement on the
ground. In that sense, accuracy in spatial data handling
is a measure of the difference between the digital
estimate and ground truth. In cases where ground truth
is poorly defined, we include variation between
observers in this definition of accuracy. Thus a failure
of different observers to agree on the class of land
cover at a point contributes to the inaccuracy of land
cover data.

Although inaccuracy is pervasive in spatial data, some
types are clearly less accurate than others. A GPS
survey provides knowa levels of positional accuracy,
down to millimeter levels. We focus in this paperona
class of data known to be subject to relatively high
levels of uncertainty, and for which there are no such
straightforward measures of accuracy. In this class,
every point on the plane is characterized by a single
value measured on a nominal scale; examples include
soil class, land cover class, and land use. We refer to
this as a multinomial field. Two data models are
commonly used to build digital representations of such
fields. The first, the raster model, is used when the
field is obtained by remote sensing, by making use of
one of a number of standard procedures for
classification. In this model, all information on within-
pixel variability is lost. The second, or polygon model,
partitions the plane into a number of polygons of

_homogeneous class, thus losing all variability within

polygons. The polygon model is also commonly used
in mapping multinomial fields, although the boundary
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need not be discretized to polygons.

Both models are clearly approximations, and although
poth are in common use, it is rare for the degree of
approximation to be made explicit in either case, or for
uncertainty to be propagated through GIS processes. In
the raster case, fuzzy classifiers provide one way of
describing uncertainty, by associating each pixel not
with a single class, but with a vector of class
memberships, each one interpreted as a measure of
velonging. Thus pixel X's degree of belonging in class i
might be denoted by w;(x), and the vector of class

memberships might be written:
{101 (%), g (X, (X))
where n is the number of classes.

In the polygon case, inaccuracy occurs in the form of
variation within polygons, perhaps at the edges where
boundaries are merely approximations to zones of
transition (Mark and Csillag, 1989), or perhaps
centrally where small inclusions and islands of different
classes have not been mapped. Neither of these issues
is dealt with effectively by giving the polygon a fuzzy
class membership. Instead, it is necessary to abandon
the polygon model because it is fundamentally unable
to serve as an adequate basis for representing within-
polygon variation. Instead, we see the geometry of the
polygon model as an artifact of the mapping process,
having little value in an effective approach to data
quality, and transform to the raster model. Thus both
heterogeneity of polygon class and transition near the
boundary are represented through the use of pixel class
memberships.

While the concept of fuzzy pixel classification is a
familiar feature of the remote sensing literature, there
has been very little research on the processing of such
data within GIS. In part this may be because of
concerns over data volume, since n memberships must
be stored for each pixel, rather than one integer
between 1 and n. In practice, however, it is rare for
more than two class memberships to be significantly
greater than zero in any one pixel. Fuzzy-classified
scenes are difficult to visualize for similar reasons, and
it is not clear how measurements such as class area can
be made from such data. Thus despite the availability
of fuzzy classifiers, and the greater information content
of fuzzy-classified scenes, it is tempting to convert such
data to a simple maximum likelihood classification on
the grounds that the latter are much easier to handle.

The purpose of this paper is to discuss methods of
visualization and processing for fuzzy-classified scenes

lines on such maps are drawn as continuous curves and
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within GIS. We include with this term not only the
results of fuzzy classification in remote sensing, but
also derivatives of the polygon model where each pixel
is associated with a mixture of classes, or with
probabilities of class membership. The next section
discusses the meaning of such data from a statistical
perspective, and introduces the concept of an error
model. The third section discusses a rule-based fuzzy
classifier for use in interactive visualization of scenes.
This is followed by a description of the environment for
visualization of fuzzy-classified scenes developed by
the authors. The final summary discusses directions for
future research.

Probabilistic Perspective

Consider a raster in which each pixel is associated with
a vector of class memberships. The various possible
sources and interpretations of this data were discussed
in the previous section. To provide a probabilistic
interpretation, we assume that the memberships are
normalized by pixel:

pi(x) = TCi(X) / i Ttk(x)

Thus pi(x) is interpreted as the probability that pixel x

belongs to class i out of the n classes. This might be
interpreted in a mixed pixel context as the proportion of
pixel x's area that is of class i; or the proportion of
interpreters who would have assigned the pixel's area to
class i; or the proportion of pixels with the same
spectral response as x that are truly i; and numerous
other interpretations are possible also.

We define the term multinomial probability field
(MPF) as a vector field whose value at any point is a
normalized vector of class membership probabilities of
length n. A raster provides a suitable way of creating
an acceptable approximation of such a field in a digital
database.

Although a display of pixels showing the membership
in each class is informative, it nevertheless fails to
convey an impression of uncertainty, suggesting that
memberships are expressions of deterministic
knowledge, rather than of lack of knowledge, or of
fuzziness. A similar situation in geostatistics has
recently been the focus of a paper by Englund (1992).
When the technique of Kriging is used to create an
interpolated surface between sample points of known
value, the result is both a surface and a map of
uncertainty. In fact the surface is the estimated mean,
and the map of uncertainty shows estimated variance
around the mean. Englund deviates from common
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practice by showing not the map of estimated means,
but sample maps from the distribution of possibilities
defined by the means and variances. These, rather than
the estimated mean, are then used in GIS processing.
As a result, Englund is able to provide visually
dramatic illustrations of the uncertainty expressed by
the estimated variances, but normally ignored in
analyses based on estimated means.

Englund's Kriging means and variances provide an
error model, or a stochastic process whose outcomes or
realizations represent the uncertainty inherent in the
data. Goodchild, Sun and Yang (1992) define an error
model in the context of spatial databases as "a
stochastic process capable of generating distorted
versions of the same reality". The best known error
model is the Gaussian, used 10 describe uncertainty in
measurements of a simple scalar quantity like the
elevation at a point. Each of the outcomes of such an
error model provides one possible version of the truth,
as it might be interpreted by one soil scientist, or as it
might be digitized by one operator.

In the context of an MPF, the probabilities are the
equivalent of Kriging means, and a2 map of them
similarly fails to convey an impression of uncertainty.
Goodchild, Sun and Yang (1992) describe an error
model for an MPF. Each realization is a map in which
each pixel is assigned to a single class. Its two essential
properties are:

1. between realizations, the proportion of
times pixel x is assigned to class i
approaches pi(x) as the number of

realizations becomes large; and

2. within realizations, the outcomes in
neighboring pixels are correlated, the
degree of correlation being controlied by a
spatial dependence parameter.

When the spatial dependence parameter is zero,
outcomes are independent in each pixel (the case
illustrated by Fisher, 1991). However, this is almost
certainly unrealistic since few if any real processes are
likely to create such independent outcomes. As the
parameter increases, outcomes are correlated over
longer and longer distances; one suitable interpretation
of this is that larger and larger inclusions within
polygons are ignored, or fall below the the minimum
mapping unit area.

Many commonly used descriptions of map error fail to
meet the requirements of an error model, since they fall
_short of the complete specification of a stochastic
process. Such descriptions include the width of an
epsilon band, the measures mandated by many map

accuracy standards, the statistics of the
misclassification matrix used in remote sensing, and the
reliability diagram found on many topographic maps,
All of these are useful error descriptors, but fall short of
being useful error models. Neither is there a usefy]
connection between many such descriptors and the
necessary parameters of error models. For example, it
is not possible to connect the parameters in the model
described above with such measures as positional
accuracy of polygon boundaries, or per-polygon
misclassification of attributes.

A Rule-Based Fuzzy Classifier

Uncertainty is endemic to land classification or
regionalization, because with few exceptions the Earth's
surface is not naturally divided into regions of uniform
attributes divided by clear boundary lines. In practice,
while some boundaries between classes may follow
well-defined lines such as roads, rivers or ridges, other
boundaries must be drawn through zones of transition,
ecotones, or similarly fuzzy areas. As a consequence,
maps of land cover made by different observers may
show different boundary positions, and also different
numbers of regions and different boundary network
topologies.  Such uncertainty may be further
complicated by imprecision in our language for
classification (Leung, 1984, 1985, 1987). Therefore it
is essential to have a built-in mechanism for analyzing
and displaying uncertainty within a spatial data
handling environment.

Conventionally, classification of remotely sensed
scenes is performed algorithmically. In supervised
classification, techniques such as maximum likelihood
(see for example Nilsson, 1965; Duda and Hart, 1973}
and the minimum distance method (Wacker and
Landgrebe, 1972; Borden et al., 1977; Phillips, 1973)
are all procedural. In unsupervised classification, the
most. common method is cluster analysis (see for
example Duda and Hart, 1973; Coleman and Andrews,
1979) which is again algorithmic in structure.

A common drawback of all of these methods is that
they cannot handle uncertainty. Fuzzy cluster analysis
(see for example Ruspini, 1970, 1973; Bezdek, 1981)
and fuzzy graphs (see for example Leung, 1984) can
analyze and depict uncertainty in classification in
general and image analysis in particular. Nevertheless
these methods are mechanical, and cannot
communicate to users any knowledge behind the
classification.

To make fuzzy classification more flexible, informative
and intelligent, a rule-based classifier has been
developed within an expert system environment (Leung
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and Leung, 1992a,b). In place of an algorithm, the
classification scheme is represented by a set of rules
indicating how spatial classes are conceptualized and
spatial data are classified. A rule in the rule set is
generally expressed as:

(rule <rule-name>
if <object 1> <operator 1> <value 1> and/or
<object 2> <operator 2> <value 2> and/or

then <object n> is <value n>
) certainty is <certainty factor>.

The operators can be ordinary inequalities (>, <, =, >=,
<=) or fuzzy inequalities (2, <, =, 2=, <= where
means approximately). The certainty factor can be a
precise value in some fixed range, a fuzzy number, or a
linguistic probability (Gopal and Woodcock, 1992).

In the identification of water from MSS data, a typical
rule might read:

If the spectral value in Band 3 (X3) is

approximately less than 8 and the spectral
value in Band 4 (X4) is approximately less

than 5 then the pixel is a water body, certainty
is 1.

Based on evaluations, ground truthing, experts'
experience and knowledge gained, rules can be
modified, deleted or added according to the rule set
without having to rewrite any part of the program, in
expert system enviroments such as those provided by
Leung and Leung (1992a,b). The knowledge-based
approach is thus more versatile than algorithmic
approaches.

Regardless of which approach is used (algorithmic-or
rule-based), fuzzy spatial classification differs from the
non-fuzzy scheme in that it can depict the intrinsic
uncertainty of spatial data. Intermediate areas, fuzzy
boundaries and fuzzy regions can be identified by
gradation, while precise boundaries can be handled
within the same framework by coupling high levels of
certainty with spatially sharp changes in class
memberships. However, to communicate uncertainty to
the user, we need to devise an effective scheme for
visual display.

kTools for Visualization

In this section we describe the tools we have developed
for rule-based fuzzy classification, and visualization of
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MPFs. As we argued in the first section, classification
procedures are important for remotely sensed imagery,
but it is also desirable to be able to visualize MPFs
from sources such as land cover maps, in which -
classification is performed by other means. For this
reason, the system is modular in design, and includes a

. classification module, display module, and modules for

data manipulation. It is interactive and uses a graphic
user interface, all instructions and operations being
triggered by selecting appropriate screen buttons.
Windows are opened and closed as appropriate. The
system has been developed in C and X Windows for the
IBM RS/6000 under the AIX operating system.

Within the classifier module, fuzzy rules are managed
by a built-in mechanism with fuzzy logic connectives.
To facilitate rule editing, fuzzy concepts can be
modified on-screen by changing critical points in the
domain over which the associated membership
functions are defined.

In the display module, images can be displayed directly
by associating colors with spectral bands without
classification, in order to support direct visualization of
the preclassified scene. However the most important
component of the module supports the display of
classified images. In general, techniques of dithering
and bit-mapping can be used to display uncertainty
(Leung and Leung, 1990) in terms of levels of class
membership, to expose the spatial variation in
membership within regions or across region
boundaries. In addition the system provides several
other measures and methods for conveying information
about an MPF to the user. The following sections
briefly describe the principal tools.

1. Unclassified image

Colors can be assigned to spectral bands to create
conventional false-color representations of the
unclassified scene. This allows the user to see the raw
data before classification.

2. Classified image

The RGB color model is used to display the results
generated by the fuzzy classifier, or input from some
other source. Each class is associated with a point in
RGB space, and each vector of class memberships is
mapped to an intermediate point in the color space by
linear interpolation. This method is successful for two
classes (n=2) provided the pure-class colors are chosen
carefully, but it is difficult for the eye to decode the
results for n=3, and for n>3 the mapping from class
membership vector to color space is no longer unique.
Moreover mapping is non-unique for n=3 if the class
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memberships have not been normalized to sum to 1
(see above).

It is possible to display each pixel's degree of belonging
to each class as a numerical value, or graphically as a
bar chart. The corresponding location in color space
can also be displayed.

To deal with the difficulty of visualizing membership in
many classes, it is possible to display each class's
memberships separately using a grey scale. By using
multiple windows one can display the general
distribution of each class for up to four or even six
classes simultaneously.

Sometimes it is desirable to have a non-fuzzy image of
a fuzzy scene. A simple defuzzing mechanism is
maximum likelihood, where the displayed class f(x) =i
if ni(x)>v:~(x) for all i,j, i not equal to j; that is, a pixel
is assigne& to class i (and displayed with class i's color)
if its degree of membership in class i is highest. The
user has control over the colors assigned 1o each class.
Frequency distributions of the entire image can be
displayed, and the user can zoom into a selected area,
or display the contents of any pixel.

3. Area

Calculation of the area occupied by each class is a
common GIS function. For conventionally classified
scenes or other forms of raster data it is calculated by
counting the pixels assigned to each class and
multiplying by pixel area. However the solution is less
clear in the case of fuzzy-classified scenes. If pi(x) is
interpreted as the proportion of pixel x that is truly class
i, as in a mixed pixel interpretation of fuzziness, then
the area of class i will be the sum of such fractions
added over the scene. On the other hand if pi(x) is

interpreted probabilistically, the same estimate must be
interpreted as the expected area of class i. Similar
approaches are appropriate if pi(x) is given other
probabilistic interpretations. Thus the calculation of
area on a fuzzy-classified scene seems adequately
addressed by calculating:

Ai =b 3 Pi(x)
X

where b is the area of each raster cell.

More difficult is the estimation of error variance,
standard error, or the uncertainty associated with such
estimates. In the mixed pixel interpretation Ai is

deterministic, with zero uncertainty. In a probabilistic
interpretation, and assuming that outcomes in each

pixel are independent of outcomes in neighbaring
pixels (zero spatial dependence) then the uncertainty
associated with area estimates can be determined from
the statistics of the binomial distribution in the form of
a standard error:

36 = b ( Z () [1-p;001 } 172
i

where Sei is the root mean square uncertainty in
estimate Ai (Fisher, 1991, used Monte Carlo simulation

to estimate standard error). But when spatial

dependence is present, as it almost always is, and
outcomes in neighboring pixels are correlated, it is
necessary to resort to the methods described by
Goodchild, Sun and Yang (1992).

4. Entropy

The degree of certainty in a pixel's classification can be
measured in various ways, but one that expresses the
degree to which membership is concentrated in a
particular class, rather than spread over a number of
classes, is the information statistic or entropy measure:

Hx)=-(1/Inn) L pi(x) In pi(x)
i .

where H(x) is the entropy associated with pixel x. H(x)
varies from 0 (one class has probability 1, all others
have probability 0) to 1 (all classes have probability
equal to 1/n). The system allows a map of H 0 be
displayed using a grey scale; light areas have high
certainty (probability concentrated in one class) while
dark areas have low certainty.

The degree of fuzziness associated with membership in
each class can be assessed by another form of the
entropy measure:

H;=-(INIn2) Z {p,(x) In p;(x)
X
+ [1-p; ()] In[1-p;(x)}}

where the sum is now over the pixels and N is the
number of pixels. H; is zero if the probability of
membership in class i is 0 or 1 in all pixels, and 1 if
probability is 0.5 in all pixels. The overall entropy H of
the entire fuzzy scene can be obtained by adding these
measures over all classes.

5. Realizations

As noted earlier, an important aspect of visualizing
uncertainty is the ability to view individual realizations
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of an error model, rather than its parameters. All of the
previously noted methods display some aspect of the
probability vectors, which are the parameters of the
error model's stochastic process, rather than its
outcomes. Viewing a display of probability vectors
necessarily diverts attention from the variation between
realizations, and focuses more on the average or
expected case.

The system includes the ability to display realizations
of the error model, using user-determined levels of
spatial dependence. Goodchild, Sun and Yang (1992)
discuss possible methods for determining appropriate
levels, as attributes of the entire map, or of individual
classes, or of geographic regions. A display of four or
six different realizations in different windows on the
screen provides graphic illustration of the implications
of uncertainty in spatial data, and draws attention to its
influence on analysis, modeling and decision-making.

Summary and Future Directions

It is often argued in the GIS community that while
uncertainty is endemic to spatial data and undoubtedly
affects the outcomes of spatial data processing, it is best
not to draw attention to it because of its complexity and
potentially damaging effects on decision-making. The
user "does not want to know". Analogous software
systems, such as the statistical packages and database
management systems, do not include techniques for
capturing, storing and manipulating explicit
information on uncertainty, so why should GIS? We
believe that this argument is both intellectually unsound
and disastrously shortsighted. Most spatial decisions,
particularly important ones, are made in-an
environment of conflict and controversy. As GIS
matures and becomes available to more and more
parties to a debate, the naive view that the party with
the GIS somehow carries greater weight will become
less and less realistic, and easier and easier to attack.
Pressures for better quality assurance and control are
already emerging from instances of GIS-related
litigation,

Spatial statistics is a complex and difficult field, and
few GIS practitioners have more than an elementary
understanding of its techniques and concepts.
Moreover visual techniques are inherently convincing
and communicative. Thus it seems that visualization
will have to be a fundamental part of any concerted
effort to handle uncertainty within GIS. Goodchild,
Sun and Yang (1992) have argued that visualization is
the key to user participation in the determination of the
key spatial dependence parameters in spatial statistical
models of uncertainty.
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An MPF is inherently multidimensional, and this paper
has presented a number of techniques for improving the
user's ability to understand this particular form of
spatial variation. However any communication system
must satisfy the requirements of the user as much as it
exploits the capabilities of the system, and it seems
clear to us that an ideal design can only come from the
experience of working with these tools in a real analytic
environment.
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