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Abstract. An error model for spatial databases is defined here as a stochastic
process capable of generating a population of distorted versions of the same pattern
of geographical variation. The differences between members of the population
represent the uncertainties present in raw or interpreted data, or introduced during
processing. Defined in this way, an error model can provide estimates of the
uncertainty associated with the products of processing in geographical information
systems. A new error model is defined in this paper for categorical data. Its
application to soil and land cover maps is discussed in two examples: the
measurement of area and the measurement of overlay. Specific details of implement-
ation and use are reviewed. The model prov1des a powerful basis for visualizing
error in area class maps, and for measuring the effects of its propagatxon through
processes of geographical information systems.

1. Introduction

The error problem in geographical information systems can be briefly summarized
as follows. The contents of a geographical information system’s database are almost
without exception approximations to real geographical variation (exceptions include
the geographical location of the North Pole and other mathematically defined objects,
as their locations can be expressed with unlimited accuracy). Products of a geograph-
ical information system are thus similarly approximations. To estimate the uncertainty
associated with a given product (e.g. its confidence limits), it is necessary to (a) model the
uncertainty existing in the database and (b) model the propagation of uncertainty
through the operations performed on the data by the system. Neither of these
requirements is trivial.

For the purposes of this paper, an error model is defined as a stochastic process
capable of generating a population of distorted versions of the same reality. Each
version is-a sample from the same population. The best known and perhaps the simplest
such error model describes the variation in samples of a single, scalar measurement,
such as air temperature, based on the Gaussian distribution. The mean of the
distribution is an estimate of the true value and the standard deviation is a measure of
uncertainty. In a spatial database context, the variation from sample to sample might
represent the differences between the classifications of the same raw land cover data by
different workers, or between different digitizations of the same map. Simple models of
error, such as the Gaussian model, attempt to provide a general framework for
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describing and simulating error, rather than an accurate model of the actual process by
which error accumulates in a given instance. The theory behind the Gaussian model
merely asserts that the error process combines a large number of random, independent
and additive distortions of unknown origin. If more information is available, such as
detailed calibrations of particular error sources, then the Gaussian model may be
replaced by a more specific model. Similarly, our model is presented as a generic
framework appropriate to the example where nothing is known about the actual
processes contributing to the error. Where these are known and are suitable for
modelling, as might be true when positional errors are introduced in line objects during
digitizing, then it may be appropriate to design and calibrate a more informed error
model. Thus we do not claim that our model is an accurate representation of the actual
processes by which error is introduced into spatial data.

Many commonly used descriptions of map error fail to meet the requirements of an
error model, as they fall short.of complete specification of a stochastic process. Such
descriptions include the width of an epsilon band, the circular map accuracy standard
used as the basis for many statements of positional accuracy, the statistics of the
misclassification matrix used in remote sensing and the reliability diagram found on
many topographic maps. None of these provides sufficient detail to support simulation
of the distortions present in complex spatial objects.

One source of difficulty in dealing with error is that the objects that populate a
geographical information system database are frequently artefacts of the process of
modelling continuous geographical variation (fields), and are thus subject to un-
certainty not only in their locations and attributes, but also in their number and
topological properties. For example, suppose two observers map land cover for the
same area, using the same raw data, and record their results as classified polygons. The
two sets of results would probably differ not only in the classes given to polygons and
the precise locations of polygon boundaries, but also in the numbers of polygons, edges
and nodes in the boundary networks. A previous paper (Goodchild 1989) discussed the
difficulty of modelling error in such databases, and argued that error models based on
fields are fundamentally easier to construct than models based on objects.

Consider, for example, the problem of modelling uncertainty in topographic
elevation. Although elevation is geographically continuous, we suppose that the
database contains a sample of digitized contours, that is, discrete objects. Uncertainty
in this instance is represented by distortion in the positions of contour lines, and is often
described by a statement such as ‘the true location of the contour lies 909, of the time
within a band of width x drawn around its recorded location’. A comparison of two
versions of the same set of contours might be expected to yield large numbers of slivers,
a commonly observed artefact of uncertainty in object positions. However, although
error bands provide a description of uncertainty, they fall short of modelling it, as the
published work on epsilon bands (e.g. Chrisman 1982) seems to provide no means of
generating a population of distorted versions that satisfy all of the requirements of
contours. :

To model error in this situation, we need to step back from the contour
representation to the data from which the contours were derived. Suppose these were a
set of spot heights, used to interpolate a continuous field. Without going into details, it
would be relatively straightforward to distort the elevation values at the spot heights,
reinterpolate the field, and then recompute the contours. Of course, the new set of
contours would be distorted relative to the first, but would satisfy all of the
requirements of contours. Moreover, the amount of distortion of contour positions
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would not be constant, but would vary depending on local slope and the proximity of
spot heights. It is perhaps worth noting that ‘kriging’ (Burrough 1986) can provide
direct estimates of the uncertainty in contour positions that is due to the interpolation
process itself.

The distinction between field and object errors models can be illustrated by
considering a simple type of query: the determination of the value of a variable (e.g. soil
type or elevation) at a specified point. In such examples the fact that objects are used to
represent geographical variation is not immediately relevant, and accuracy in the
positions of contours or polygon boundaries would be a very indirect way of expressing
uncertainty in the value of a variable at a point.

As geographical information systems make use of both field and object represent-
ations, it is essential that any comprehensive approach to error modelling is meaningful
in both domains. The purpose of this paper is to present such a model for categorical
data, to illustrate its implementation and to present some results from the generation of
a simple product of a geographical information system.

2. Categorical data

The focus of this paper is the so-called ‘area class map’ (Mark and Csillag 1989) or
‘categorical coverage’ (Chrisman 1982). This is a single variable taking a finite number
of discrete, nominal categories, and whose value is known everywhere in the mapped
region. Two data models are commonly used to present such variables. The polygon
(often described as the vector) model identifies areas of homogeneous value, and is
typified by the lines drawn on soil maps, or their digitized equivalent. The raster model
identifies the class that is dominant in every cell of a regular (normally rectangular)
array or tesselation, and is typified by a classified remotely sensed scene. Polygon and
raster models are commonly used in spatial databases to represent such categorical
data.

One source of uncertainty in polygon model databases derives from the digitizing
process. The source map may have been distorted by folding, a change of humidity, or
its placement on the table; registration points may have been located incorrectly; the
cursor may not be positioned accurately; and there will be significant variation between
individual operators in the selection of points to be digitized. Several error models of
the digitizing process have been proposed (Keefer et al. 1988, Dunn et al. 1990, Bolstad
et al. 1990).

However, the errors introduced by digitizing categorical data using the polygon
model are generally small compared with the uncertainties present in the source
document and passed intact into the spatial database. First, the boundaries digitized
often represent generalizations of transition zones of various widths rather than real,
sharp changes of category. The class assigned to a polygon is not, in fact, a
homogeneous property of the entire polygon—many legends include such terms as
‘mostly’, ‘predominantly’, ‘a mixture’, ‘substantial inclusions’. Holes and islands, i.e.
inclusions of another class, are often deleted during the map-making process,
particularly if they fall below some established threshold or ‘minimum mapping unit’.
Finally, the boundaries of polygons are often deliberately smoothed to create a more
pleasing cartographic effect. In short, such maps, and particularly their digitized
versions, often create a false sense of accuracy by being stripped of any indication of
uncertainty. _ :

Figure 1 shows a typical polygon model categorical dataset. Its polygons have
homogeneous attributes, its boundaries are infinitely thin lines, it has an imposed
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Figure 1. Typical categorical coverage using the polygon model.

threshold of minimum polygon area and its boundaries have been smoothed. In the
context of this paper it represents a single sample from a population of distorted
versions of the same truth, just as the Gaussian distribution is used to represent
different observations of the same scalar measurement. Samples can be expected to
vary not only in the positions of boundaries, but also in the number of polygons and the
positions and number of nodes.

This is the object based (‘cartographic’) view of uncertainty that underlies the data
quality sections of the proposed US Spatial Data Transfer Standard (DCDSTF 1988).
In the contrasting field based view, polygons and their geometry and topology are
themselves artefacts of the data modelling process and are thus not central to the
issue of error. The real geographical variation is complex and continuous, and
uncertainty is better described by devices such as the misclassification matrix (van
Genderen and Lock 1977, Mead and Szajgin 1982), which provides empirical estimates
of the probabilities of observing class i at a point when in reality class j is present, for all
i and j. One obvious shortcoming of the matrix is its implicit assumption that these
probabilities are constant over the mapped area.

3. The model: conceptual discussion

The mapped area is assumed to be discretized as an array of N cells, with rows and
columns indexed by i and j, respectively. The raster model is chosen over the polygon
model because of its greater suitability for capturing inherently continuous variation.
The variable that is mapped over the area has n discrete classes, indexed by k. Finally,
the probability that cell i, j falls into category k is given by pf; associated with each cell
is a vector of probabilities { p, pZ....p}}-

There are two common sources of this type of data, and together they cover many
applications of geographical information systems. One is remote sensing, where it is
assumed that the uncertainty associated with a classified scene is represented by the
probability vectors. Many classifiers are capable of yielding this type of data, but in
practice such probability vectors are commonly replaced by the most likely class,

s|p§;>pl; for all k+s. Probabilities might be interpreted as indicative of uncertain
classification, of mixed pixels, of heterogeneous classes, or might be the product of a
fuzzy classification. The other common source is interpretive mapping, as it is common
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for legends on land cover, soil, vegetation, or land use maps to include percentages, as in
‘90% class A with 10% inclusions of class B’. The well known Canada Geographic
Information System (Tomlinson et al. 1976) provides three such classes and percen-
tages for every polygon, although many analyses ignore all but the most common class.
In this second example probabilities can be expressed as attributes of polygons, but are
assumed to be expressed in raster form for the purposes of this error model.

The probability vector approach can also be used to characterize transition zones,
asin the example now given. For example, the transition between a class A polygon and
a class B polygon might be represented by cells with probability vectors varying
gradually from {1-0,0-0} through {0-5,0-5} to {0-0,1-0} (Mark and Csillag 1989). The
degree of fuzziness of the boundary (an object concept) can thus be represented in the
steepness of the probability gradient (a field concept). However, continuous variation is
not limited to polygon boundaries. In some instances lower levels of certainty may
occur in the interiors of polygons, rather than at the edges. For example, the class
‘wetland’ may be typified more by the sedge marshes around the edge of a wetland
polygon than by the small area of open water in the middle.

In the error model described in this paper, the probability vectors associated with
each pixel are assumed to be given by, and to summarize what is known about, detailed
geographical variation within the mapped area. In contrast, the earlier model of
Goodchild and Dubuc (1987) assumed that nothing was known about detailed
geographical variation and instead generated samples of all possible maps. This earlier
model operationalized the idea of a ‘random map’, but, unlike the new model, it cannot
generate distortions of the same truth. In the new model, the absence of uncertainty is
represented by having exactly one non-zero probability in every vector, i.e. by being
certain about the class present in every cell. In remote sensing, the ‘mixed pixel’ effect
ensures that uncertainty can never be completely absent from a scene.

Each sample map is a realization of the stochastic process defined by the
probabilities, in which each cell is-assigned to one and only one category. If one cell of
the raster is compared across a large number of realizations, the proportion of
realizations in which the cell was classified into a given category will approximate the
given probability. One obvious way of obtaining a realization is to assign classes
independently in each cell. Let cf; represent the sum of class probabilities up to and
including class k; cf; is therefore the sum of pf; from s=1 to k. Mechanically, we could
achieve such a realization by generating a uniformly distributed random number in the
range 0-1 in each cell, denoted by z;;. Then cell i, j would be assigned to class k if
ok l<z <l

Such an independent assignment of classes in each cell would fail to address the all
important issue of texture. Consider a polygon with a homogeneous probability vector
{0-8,0-2}. At one extreme, the 20 per cent inclusions of class 2 might be fully mixed with
the dominant class, so that any subarea within the polygon, however small, would
contain exactly 20 per cent class 2. Every cell in a raster representation would be
classified as class 1. At the opposite extreme, the probabilities might be interpreted as
referring to the polygon as a whole. For example, the polygon might correspond to the
boundaries of an agricultural field, and the uncertainty might relate to the type of crop
growing in the field. In between lies a range of geographical scales of mixing between
the two types, and corresponding size distributions of inclusions of class 2.

The texture can be controlled in an appropriate manner by inducing correlation
between outcomes in neighbouring cells. When the correlation is zero, the pattern of
inclusions is dominated by the cell size, but as the correlation increases, larger and
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Figure 2. Simulation of inclusions within  Figure 3. Simulation of a transition zone

between two homogeneous areas, with

two polygons, with increasing levels of
increasing levels of spatial dependence.

spatial dependence.

-




Error model for categorical data 93

larger aggregates begin to appear. The precise details are given in the following section.
In summary, the requirements of the error model are (a) a vector of given probabilities
in each cell determines the proportion of realizations in which the cell is assigned to
each given class and (b) a correlation parameter determines the level of dependence
between outcomes in neighbouring cells in any one realization. One realization of the
process might correspond to the map drawn by one interpreter; the difference between
realizations in this instance would represent the uncertainty introduced by variations
between individual interpretations.

Figure 2 shows a simple illustration of the error model for two polygons, and
demonstrates its ability to handle the problem of heterogeneity. Cells in the left polygon
of each pair have a 75 per cent probability of being black, 25 per cent white, i.e. a
probability vector of {0-75,0-25}; probabilities are reversed in the right-hand polygon.
The top panel is a realization with very low spatial dependence and shows the
dominant influence of the cell size. The level of spatial dependence is increased in the
other panels, leading to increasingly large inclusions. At the limit the entire left polygon
would be either black or white in any one realization, with probabilities of 0-75 and
0-25, respectively. Note that the boundary between the two polygons remains clear in
all illustrations because of its sharp change of probabilities.

Figure 3 shows the error model in the context of boundary transition, rather than
polygon heterogeneity. The probability vectors in all three panels range from {1-0, 0-0}
on the left to {0-0,1-0} on the right, and follow a logistic (S-shaped) curve in the area of
the boundary; the gradient of probability is steepest half-way across the diagram.
Again, the upper panel shows the example where spatial dependence is almost absent.
As dependence increases, the pattern is increasingly interpretable as the boundary
between two polygon objects. As the position of the inferred boundary is different in
every realization, the process provides a model of distortion in the position of a
boundary between two polygons, and could be interpreted as a simulation of the
uncertainty introduced by two digitizer operators. Superimposing a larger number of
realizations with high spatial dependence would give an interpretation of the
uncertainty band concept.

The two figures show a clear linkage between field and object-concepts, first in the
appearance of inclusion objects as a result of heterogeneity, and second in the
modelling of positional uncertainty in the boundary between two polygon objects. In
both instances the model provides a means of generating samples of distorted versions
of the same basic truth (embedded in the probability vector fields) under different levels
of spatial dependence.

The next section provides a precise statement of the model, and of the method used
to generate these examples.

4. The model: technical discussion

Goodchild and Wang (1988) described an early version of the model in which
spatially dependent realizations were computed by an averaging process. Each cell was
first independently assigned a class, using the method described earlier. A 3 x 3 moving
window was then passed repeatedly over the map, centring it on every cell in turn. At
each position the central cell was assigned the modal class of the nine cells in the
window. Unfortunately, it is easy to show that in this process the proportion of
realizations P%; in which cell , j is given class k will not be equal to p};—in fact:
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Thus, although the process induces spatial dependence, it fails to satisfy the first
requirement of the model, that the proportion of realizations in which a given cell is
assigned to a given class is equal to the prescribed probability.

The two requirements can be satisfied if spatial dependence can be induced in the
continuous variable z;; (recall that z;; is a uniform random deviate in the range 0-1).
Thus, we seek a process for generating a random field in which (4) the marginal
distribution of the variable in each cell is known across realizations and (b) spatial
dependence is controlled in some straightforward fashion.

Consider the spatially autoregressive process:

X=pWX +s, )

where X is a vector of length N (rows x columns), p is a parameter, W is a matrix of
dimensions N by N, and ¢ is a vector of length N (our previous row and column
indexing of cells has been replaced by a single index). Elements w,, of matrix W are unit
if cells u and v are Rook’s case neighbours (share a common edge) and 0 otherwise. The
elements of ¢ are independent Gaussian random deviates with mean 0 and a standard
deviation of unity. Conceptually, equation (2) states that the value of the variable X ina
cell can be predicted from a weighted combination of the values of the variable in
neighbouring cells, plus a random value unique to the cell itself. When p is zero, the
variable has no spatial dependence. The maximum value of p is 0-25 to ensure
stationarity (Cliff and Ord 1981).

Equation (2) provides a system of simultaneous linear equations that can be solved
to find X. In principle, this requires the inversion of an N by N matrix (rows x columns
by rows x columns, e.g. at 64 x 64 map requires inversion of a 4096 x 4096 matrix).

X=(I-pW) s, G)

where I'is an N by N matrix with ones on the diagonal and zeroes elsewhere. To reduce
the importance of edge effects, the array can be mapped on to a torus. In this way cells
on the left edge of the array become neighbours of those on the right, and similarly for
the top and bottom of the array, ensuring that all cells have the full complement of four
Rook’s case neighbours. An alternative method for dealing with edge effects is to
exclude the outer cells from the calculation [see Griffith (1983) for a comprehensive
discussion of edge effects].

The variable X has a level of spatial dependence determined by p, and a marginal
distribution which is known to be Gaussian with a mean of zero. The variance-
covariance matrix of X is given by Haining et al. (1983):

[d—pW)T I —pW)]™ . )

A simple transformation is therefore sufficient to obtain the desired values z;;, with
controlled spatial dependence and a uniform distribution in the range 0-1.

As a result of the need to invert an N by N matrix, this method of generating a
stationary random field presents difficult computational problems, despite its con-
ceptual simplicity. King and Smith (1988) used a spectral approach to calculate the
inverse (see also Larimore 1977). Heuvelink (in press) has proposed a computationally
simple iterative method which can be implemented for any matrix W, whereas the
approach used in this paper is effectively restricted to correlation with Rook’s case
neighbours. For the examples in this paper, it was possible to solve equation (2) directly
by matrix inversion, by exploiting the inherent simplicity of W and reducing inversion
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to the use of a set of simple rules (an algorithm coded in C is available from the authors).
In this way it has been possible to simulate arrays as large as 512 x 512 (W dimensioned
to 5122 x 5122). However, Heuvelink’s method provides a much more practical and
robust approach and it is recommended that it is used in practice.

This process was used to obtain figures 2 and 3, based on arrays of 64 rows and 64
columns. The upper panels in these figures were obtained by setting p to 0-050; p =0-230
in the centre panels and p =0-247 in the lower panels. Inclusions grow very rapidly as p
approaches 0250, and edge effects and numerical errors in the inversion become
important near the limit.

5. Application I

The data quality statements that often accompany digital spatial databases provide
useful information on data accuracy. For example, the accuracy of a digital elevation
model is often characterized by a root mean square error (RMSE) in its elevation
measurements. An RMSE of 7 m indicates that the square root of the average squared
difference between the true and recorded elevations at randomly chosen points in the
mapped area is 7m. However, such measures are not sufficient to estimate the
uncertainty associated with products of geographical information systems. In the
elevation case, the RMSE is not sufficient to place confidence limits on slopes or aspects
calculated from the digital elevation matrix, or on more complex products such as the
areas of viewsheds (Felleman and Griffin 1990). In these instances it is necessary to
have information not only on the RMSE, but also on the spatial dependence of errors
(Fisher 1990). The uncertainty in slope estimates is clearly much higher if errors are
locally spatially independent than if they are positively correlated.

For similar reasons, although it is possible to describe the accuracy of a categorical
variable with a simple misclassification matrix, such measures are insufficient to
provide measures of uncertainty on computed products, e.g. the total area of a certain
class. The band concept described earlier is a useful description of positional accuracy
in a polygon boundary, but not sufficient to place confidence limits on the polygon’s
area.

However, a stochastic error model, as distinct from a simple descriptive statistic
such as the RMSE, is an adequate basis for determining levels of uncertainty in
products. Chrisman and Yandell (1988) and Keefer et al. (1988) have shown how an
- error model can be used to characterize the uncertainty associated with digitizing and
to estimate the standard error of polygon areas. In this section it is shown how the error
model presented earlier can be used to establish confidence limits on area estimates
using a simple example. '

5.1. Data

Fisher (1991) provides an-interesting example of the effects of uncertainties in area
estimates. In certain areas of the United States the assessed value of agricultural land is
based in part on soil class. Soil mapping involves substantial professional judgment
and subjectivity and uncertainty is often expressed explicitly in the finished product. A
given unit, mapped as one or more polygons, might be described as ‘80%, A with 209,
inclusions of B’. As the map gives no information on the locations of inclusions of B,
there is substantial uncertainty about the amount of land on a given farm that is
actually A, and thus in the assessed value and taxes. The example provides a direct link

“between geographical uncertainty and economic value.
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Figure 4. Data used in the example applications, digitized by Fisher (1991) from the Medina,
Ohio soil map and simplified by merging three classes.

To illustrate the application of the error model, rectangular study area on the
Medina, Ohio, soil map previously coded by Fisher was taken. Some 39 soil classes
occur in the 150 x 200 cell area, and three of these classes were arbitrarily merged to
form an area of 7513 cells, or approximately 25 per cent of the mapped area. The
merged classes were given a value of unity, and all other classes a value of zero. Figure 4
shows the smooth boundaries typical of this series of soil maps, although these are
distorted by the coarse pixels.

For the purposes of illustration, it is proposed that class 1 is described as ‘80%; A
with 20%, inclusions of B’. Thus an area equivalent to 6010 cells would be expected to be
truly A. In the following section the use of the error model to estimate the actual area of
A and the associated uncertainty is investigated. Uncertainty is measured in two ways:
relative to the expected area of 6010 (denoted by s,), and relative to the mean estimated
area (denoted by s,). In both instances the standard error, or RMSE, is used, which is
crudely interpreted as the ‘typical’ difference between the estimated area and the true
value. ‘

5.2. Subcell mixing

The example is first considered where A and B are fully mixed at the subcell level. If
mixing is spatially homogeneous, then the dominant class in every cell will be A. Thus,
the estimated area of A will be heavily biased at 7513 cells and no cells of class B will be
observed. As this estimate is constant, s, is zero. The uncertainty relative to the
expected area, s,, is much larger because of the bias, at (7513 —6010)=1503.

5.3. Independence (p=0) ,
When outcomes are independent in each cell, the binomial distribution can be used
to calculate the expected area A and its uncertainty [Fisher (1991) used Monte




Error model for categorical data 97

Carlo simulation]. On average, 6010 cells will be classified as A and 1503 as B. From
the standard deviation of the binomial, it is known that s;=s5,=[7513 x0-80 x
(1—0-80)]°° =34-7. Thus, uncertainty about the locations of inclusions might lead to
estimates of the area of A as high as 6050, or as low as 5970. More precisely, and
approximating the binomial distribution by the Gaussian distribution for large sample
sizes, the 95% confidence limits on the area of A are 6010+(1-96 x 34:7). The observed
area can therefore be expected to lie between 5942 and 6078 in 959 of trials. For
independence, the size of inclusions is roughly equal to the cell size.

5.4. Spatial dependence (0-25> p>0)

Spatial dependence is now considered. Using the probability vector {0-8,0-2} for all
cells within class 1, the patterns of inclusions of B for various values of the spatial
dependence parameter p were simulated. The error model was realized ten times for
each value of p. Figure 5 shows example realizations for p =0-200 and p =0-240. Owing
to the high standard error, ten realizations were not sufficient to obtain accurate
estimates of the mean, so it is not clear whether the observed deviations from 6010
indicate substantial bias, although it is observed that s, >s,. Table 1 shows the results
obtained for various values of p. Although 0-250 is the theoretical upper limit of the
range of p, it has nevertheless been possible to obtain useful simulations at this value,
and simulated inclusions are large but still less than the size of the mapped area.

5.5. Limit (p=0-25)

In the limit, the entire area of class 1 (7513 cells) is either A with probability 0-80, or
B with probability 0-20. In this instance the uncertainty of an estimate of the area of A
can be calculated directly, and s, =s,.

LR
-d.’:n . ‘

(a) ®
Figure 5. Example realizations of the error model for two levels of spatial dependence and 207,
inclusions.




98 M. F. Goodchild et al.

Table 1. Estimates of area and associated uncertainties for various levels of spatial dependence,

P Sample size Mean estimate 8, S5 DF*
0-000 (Calculated) 6010 35 35 7513
0-200 10 6139 156 88 1166
0-240 10 6153 210 150 401
0-245 10 6158 268 223 182
0-249 10 6254 395 311 93
0-250 10 6514 753 559 29
Limit (Calculated) 6010 3005 3005

“Number of trials needed to produce the observed value of s, in a binomial distribution (see
text).

5.6. Summary

These simulations indicate, as might be expected, that the uncertainty associated
with an estimate of the area of A rises rapidly with the level of spatial dependence. As
the inclusions of B increase in size, the ability to estimate the true area of A deteriorates,
although its theoretical value remains constant at 6010 pixels, or 80 per cent of the
polygon area. In Fisher’s example, the uncertainty associated with taxes based on
measured area is much higher for p > 0 than under spatial independence, and may be as
much as an order of magnitude higher. Moreover, subcell mixing also produces a large
discrepancy between the expected area of 6010 and actual estimates.

Suppose, for example, that a farmer pays annual taxes of $6010 based on ownership
of 7513 pixels of this soil type, identified as ‘809 A with 20% inclusions of B’. If the
inclusions of B are small (p=0), an accurate assessment based on the true area of A
mapped pixel by pixel might correct the assessment to as much as $6078 or as little as
$5942, or an uncertainty of +1-1 per cent. However at p=0-249, with much larger
inclusions, the estimated 959 confidence limits become $6884 and $5236, or +12-9
per cent.

One way to think of spatial dependence is as a loss of effective degrees of freedom
(Cliff and Ord 1981). In the limit at p=0-25, the class of all 7513 cells is assigned by a
single trial, whereas at p =0 each cell’s class is the outcome of a separate, independent
trial. In effect, the number of degrees of freedom has changed from 1 to 7513. We can
infer the effective number of degrees of freedom for a given p by asking what number of
independent trials would be required to yield the observed standard error in area
estimates, s,, using the standard deviation of the binomial distribution. The results are
shown in table 1, and might be thought of as crudely indicative of the number of
inclusions present at each level of p.

6. Application II

One of the common applications of geographical information systems is in
estimating the area with some combination of characteristics on more than one layer
using an overlay process. Several studies have been published (MacDougall 1975,
Chrisman 1987, Veregin 1989, Newcomer and Szagin 1984) on the accuracy of overlays
and the propagation of uncertainty in the input layers. However, these have been
concerned only with estimating the probability that the characteristics ascribed to the
overlay are correct. Suppose, for example, that map 1 depicts two classes, 1A and 1B,
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and assigns a probability vector {0-8,0-2} to a given point. In a similar fashion map 2
depicts classes 2A and 2B and assigns a probability vector {0-9,0-1} to the same point.
After overlay the point may have any one of four classes—1A2A, 1A2B, 1B2A, or
1B2B—and the associated probability vector will have four components. If the errors
are independent on the two maps, the overlay probability vector will be found by
simple multiplication to be {0-72,0-08,0-18,0-02}. However, conditional probabilities
must be used if correlations exist between the errors on the two maps. This type of
correlation is referred to as thematic dependence to distinguish it from the spatial
dependence that is likely to exist in each layer.

To estimate the uncertainty of products derived from the overlay, the same problem
is faced as before, namely that probability vectors alone are not sufficient to model
error, as they contain no information on the spatial dependence of errors within each
layer, or in the overlay.

In this section the effects of spatial dependence on the results of overlay are
considered; assuming as before that the product of interest is a measure of area. For
convenience, overlays of the same Medina data are used, and the task of estimating the
area of soil type A is considered as before. In the overlay, the area that is classified as AA
is of interest, that is, class A on both input layers. The layers may have the same or
different values of p, and no attempt will be made to simulate thematic dependence.

Consider two of the realizations used in the application, with the same value of p.
With 10 realizations, 45 overlays can be generated (100 where p is different on the two
maps), and that number of estimates of the area that is A on both maps can be made.
For p =0 the binomial distribution can again be used to predict the mean and standard
deviation, as the probability that a cell is A on both maps is 0-8 x 0-8=0-64. The
expected area is 4808 with a standard error s; =s, =33. However, standard errors are
expected to increase with increasing p.

Table 2 shows the results of overlaying all combinations of realizations and values
of p. Only s, is shown, i.e. the uncertainty with respect to the mean estimate rather than
the expected estimate. As expected, standard errors are highest when two layers with
high spatial dependence are overlaid.

The diagonal terms in table 2 show the uncertainty in area estimates when two
layers with the same levels of spatial dependence, but zero thematic dependence, are
overlaid. In proportion to the mean estimate, uncertainty in areas estimated from two
overlaid layers is roughly 32 per cent higher than in areas estimated from one layer if
spatial dependence is held constant. Table 2 shows the uncertainty to be generally

Table 2. Estimates of area and associated uncertainties (s,) for overlaid combinations.

p p=0000 p=0200 p=0240 p=0245 p=0249 p=0250

0000  4808(33)

0200 49117 5015(94)

0240 49220 5109(243)  5034(162)

0245 49267 5089(202)  5131(327)  5037(243)

0249 50037 5141(134)  5176(238)  5190(338)  5193(341)

0250  5211° 5338(97)  5363(167) 5373(229) S5478(323) 5660 (643)

Sample size 45 for diagonal elements, 100 for off-diagonal elements.
¢Standard errors not determined for. overlays with p=0.
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highest where the averaged spatial dependence of the two layers is highest. It is
concluded that the effect of a given level of spatial dependence on the ability to estimate
area from uncertain layers worsens substantially as layers are overlaid.

7. Implementation

The error model requires that uncertainty is represented in the database in the form
of probability vectors, either on a cell by cell basis or for entire polygons, although in
the latter instance the model can deal only with heterogeneity (figure 2) and not with
transition effects (figure 3). It has already been discussed how such data might be
obtained from image classification or from the legends of thematic maps. Probability
vectors would clearly take more storage than simple classes, leading to a very
substantial increase in the volume of the database. However, it seems likely that in most
instances these probability vectors would contain only a few non-zero terms, and
assorted compression techniques might be used to cope with the problem of volume.

In this section two further issues in implementing the model are discussed: the
determination of p and the design of an uncertainty-reporting geographical
information system.

7.1. Determination of p

To characterize spatial dependence, it is necessary to provide the model with a value
of p. Note that the effects of p increase sharply as the maximum value of 1/4 is
approached. In this paper p has been presented as a property of the map as a whole, and
this may be appropriate in examples where the map has been created by the
interpretation of imagery at a constant scale. However, in many applications p might be
allowed to vary regionally. For example, on a land use map it is likely that inclusions in
urban areas would require a different value of p from inclusions in forested areas,
although this clearly presents an interesting paradox at any urban—forest boundary.
Techniques to relate image texture to p might be helpful, and it might also be possible to
generalize the error model to incorporate the more detailed descriptions of spatial
dependence that are available from such indicators as the variogram.

In many applications, p is seen as being supplied by the user, based on intuitive
expectations about the sizes of inclusions. Unfortunately, it is not possible to provide a
simple relationship, e.g. between mean inclusion size or minimum mapping unit and p,
owing to the confounding effects of the probability vectors. For example, table 3 shows
mean inclusion size under various combinations of p and probability (where
probability refers to the class forming the inclusions; the pixels in an inclusion are

Table 3. Mean area of simulated inclusions for various levels of spatial dependence and
probability of the included class.

Probability

p 05 04 03 02 Ol

0-200 19 10 6 3 2
0240 46 27 17 10 6
0-245 62 3% 26 17 10
0249 131 97 73 48 29
0250 408 304 274 219 116
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Rook’s case neighbours; means were estimated over 10 realizations and with a total
area of 7513 pixels). However, it is possible to simulate the visual appearance of various
values of p, and to make a subjective choice on that basis.

Ideally, the probabilities and p are seen as being captured during the process of
interpretation and classification by the worker creating the database from field or
remotely sensed data. A soil scientist might be asked to attach percentage estimates to
each polygon, to estimate p from a set of visual representations of various inclusion
patterns and to attach a measure of fuzziness or width to each polygon boundary. In
current practice, although much of this information is available, at least as crude
estimates to the discipline specialist creating a map, it is lost during the processes of
map-making and digitizing.

7.2. Implications for the design of geographical information systems

The nature of the error model and its dependence on input probability vectors
ensure that no general analytical results can be obtained, and that the model must
therefore be applied using simulation. In a conventional raster geographical inform-
ation system, the area of class A on a layer is measured by counting cells and no
measure of uncertainty is given. In a vector system, area is obtained from geometrical
calculations on every class A polygon, and again no measure of uncertainty is available.

The error model proposed here must be implemented in the raster domain to
accommodate simulation. Thus it is assumed that the database is structured as a set of
layers, each consisting of an array of cells and associated probability vectors. A value of
p is also available for every cell, either as a constant over the mapped area or as a region
based variable.

This uncertainty-reporting geographical information system would store perma-
nently a set of realizations of the autoregressive model, in the form of arrays of z;
values. It is expected that ten realizations would be adequate for each of five selected
values of p (e.g. 0-200, 0-240, 0-246, 0-249, 0-250). The arrays would have to be as large (in
rows and columns) as the largest anticipated application.

To measure the area of class A on a given layer, instead of counting cells, the system
would compute ten classified maps, using the ten stored realizations of z;; values for the
chosen value(s) of p. Cells would be counted on each of the ten maps and used to
compute a mean estimate and standard error, which would then be reported to the user.
The process of simulating error would not be shown to the user, but the system would
have the ability to display realizations of classified maps on request for visual
assessment. The authors are in the process of implementing this model at the University
of California at Santa Barbara using the GRASS system.

Clearly this process has a substantial computational overhead, although the
operation would be essentially transparent to the user. If speed of processing is a
problem, it might be possible to develop a series of general rules of thumb rather than to
‘invoke simulation on every process. However, in general it would be possible to use this
approach to provide uncertainty measures on every product of the geographical
information system, not only area estimates.

8. Conclusions

Categorical spatial data are commonly produced by disciplines concerned with the
interpretation of complex geographical variation and represent little more than the
primitive scientific process of classification applied in a spatial context. As such, they
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are the basis for many applications of geographical information systems, particularly in
resource analysis and management. Seen in this context, the results obtained in this
paper are disturbing, although they could be anticipated if the effects of spatial
dependence are considered carefully. In reality, both uncertainty (in the form of class
probabilities of less than 1) and spatial dependence are almost always present in
categorical spatial data, and area estimates are one of the most common products of a
geographical information system. Given the magnitudes of the uncertainties shown by
this example, it seems essential that greater efforts are made to deal explicitly with the
error problem in spatial databases.

In this paper overlay has been considered as a process of combining attributes from
two input layers and the influence of thematic dependence between layers has been
ignored. In most applications, overlay is followed by some form of reclassification, and
the rules that determine the output class as a function of two or more input classes are
often complex. The only rule considered here is the ‘AND’ condition, although Veregin
(1989) and others have also considered the ‘OR’ condition. Given the nature of this
model, it seems unlikely that any analytical results could be obtained for these different
conditions that go beyond those already known, and that simulation is therefore the
only effective way to proceed.

The applications discussed in this paper have been limited to measurement of area.
However, the error model could be applied to any other operation of a geographical
information system on categorical data. Tasks such as the estimation of the length of
the common boundary between two polygons, or of the sizes and shapes of slivers,
would require the classified cell realizations presented here to be converted to vector
representations of objects, as discussed for figure 3.

The probability vectors and spatial autocorrelation parameter that together
characterize the model provide an adequate description of generic problems of within
polygon heterogeneity and transition across polygon boundaries. More complex and
specific error models would be required to handle examples where spatial dependence
is anisotropic, or where detailed information is available on the form of spatial
dependence present. In some instances spatial dependence might be expected to be
specific to class. However, the model provides a robust, simple and straightforward
approach in those instances where very little is known about the forms of error present
or the processes contributing to them. For reasons already discussed, this lack of
knowledge seems broadly characteristic of the use of map or remote sensing data in
geographical information systems.
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