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Abstract

Agencies acquiring GIS hardware and software are faced with uncertainty at two
levels: over the degree to which the proposed system will perform the function
required, and over the degree to which it is capable of doing so within proposed
production schedules. As the field matures the second is becoming more significant.
A formal model of the process of acquiring a GIS is presented, based on the conep-
tual level of defining GIS sub-tasks. The appropriateness of the approach is
illustrated using performance data from the Canada Land Data System. It is possible
to construct reasonably accurate models of system resource utilization using simple
predictors and least square techniques, and a combination of inductive and deduc-
tive reasoning. The model has been implemented in an interactive package for MS-
DOS systems.

Introduction

The development of geographic information systems has now reached the point
where substantial numbers of turnkey production systems are being acquired from
vendors and installed in public and private agencies. In many cases these agencies
will have made detailed plans for the use of the system before its selection, including
evaluation of work-loads, and will have required potential vendors to respond
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directly to these plans. The vendor in turn will have provided 535.2.5: on the
extent to which the proposed system is capable of performing the prescribed work,
in terms both of specific functions and overall utilization of system resources.

In many ways this ideal, objective and precise model of the process of acquiring
a system is rarely achieved in practice. The agency must first identify the .mvnn_mn
products which it expects to obtain from the system over the planning period and
the numbers of those products. For example, a forest management agency would
have to describe the maps and tabular outputs it would wish the system to produce
over a period of, say, 5 years. This would be used as the basis for identifying firstly
the data sets which would have to be input to the system, based on adequate
measures of the volume and complexity of the data sets, and secondly the functions
which the system would have to be able to perform on those data sets to generate
the required products, based on an adequate taxonomy of GIS functions. )

In responding, the vendor would first compare the list of required functions to
the capacities of the system, a straightforward task given a precise and well-defined
taxonomy of GIS functions. A hardware configuration would be selected which
would provide adequate resources for the prescribed work-load, in terms of stan-
dard measures such as utilization of c.p.u. and disk storage, with a suitable margin
for safety. Finally, the package would be proposed to the agency with a detailed
commentary on the extent to which it did not satisfy the agency’s requirements.

At this point, the agency is faced with the difficult task of evaluation . The
simple ‘yes’ or ‘no’ response to functional capability is likely to be Sv_mon.a by
multiple shades of grey: ‘Polygon overlay is under development and will be available
in three months’; ‘Polygon overlay is possible but extremely slow’; ‘Polygon overlay
is present but will not handle all special cases’. More difficult is the mm.momm_do:n of
projected work-load. How reliable are the vendor’s estimates of nxooE:.E times of
polygon overlays for projected workload, or input rates for digitizing? Will the same
estimates be achievable in the agency’s own environment and given the proposed
arrangements for the maintenance of hardware and software?

The ideal course of action at this point would be to bench-mark the proposed
system, thereby checking and refining the vendor’s own stated assessment of func-
tionality, and to make independent estimates of performance under the proposed work-
load. The first objective would require a bench-mark script which tested each of the
required GIS functions and assessed the response against an ordinal scale. We 3»”2
to this as a qualitative bench-mark of the system. Of particular interest are special
cases: geometric conditions which are known to defeat simple routines for polygon
overlay, for example. The second objective, which implies a quantitative bench-mark
of measured resource use, is more difficult, and is discussed at length below.

The model of the process of acquiring a GIS presented above has several points
of weakness, but can bring some degree of objectivity and regularity to what is o:.n;.mmo
an extremely risky and uncertain process. It assumes that at two points, in the generation
of the vendor’s response and in the agency’s bench-mark evaluation, it is possible to
predict the demands that a known volume of work will place on a known system con-
figuration. This is the task which the computer science literature refers to as performance
evaluation, and it will become increasingly important in the GIS field as the context
changes steadily from research and development to production. The purpose of this
paper is to investigate the extent to which performance evaluation is possible and useful
within the GIS context, since there appear to be several reasons for believing that this
context is significantly different from the Canada Land Data System (Canada Geographic
Information System), which has been operating in a production mode with stable hard-
ware and software and experienced staff for some years. :
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Performance evaluation

Performance evaluation relies on the assumption that it is possible to predict
resource use for future tasks from a relatively small amount of data gathered by
observation using tasks of known characteristics. To do so, it must be possible to
break any task down into a number of standard types of sub-task, and to develop
predictive models for each one. Performance against a future task is then predicted
from the sum of its sub-tasks. .

Early methods of performance evaluation relied heavily on defining sub-tasks
at the level of the individual machine or Fortran instruction. Standards such as the
Gibson mix (see, for example, Jones 1975) provided relative frequencies of the use
of instructions in a general computing environment. However, the move to multi-
tasking and interactive operating systems in the late 1960s made such methods inade-
quate: task performance could no longer be modelled as the accumulation of
individual instruction sub-tasks because of effects of queuing and of the sequence
of instructions (for reviews, see Chandy and Reiser, 1977; Beilner and Gelende, 1977;
Ferrari, 1978; Hellerman and Conroy, 1975).

In the GIS field the appropriate level of sub-task would appear to be
predetermined by the nature of current software. The agency acquiring a system
is likely to specify its requirements at the conceptual level in order to avoid bias
in favour of any particular GIS. Thus polygon overlay is probably an acceptable
sub-task since it does not presume any particular data structure or algorithm,
and can be performed in either raster or vector mode. But a lower level, such as
the Fortran instruction, would not be acceptable because algorithms from
different vendors for the same polygon overlay would have quite different
instruction mixes. Similarly, data input is an acceptable sub-task, but scanning
and digitizing are not because their use may vary from one vendor’s proposal to
that of another. The conceptual level of sub-task is also appropriate because it is
the level at which most current system/user interfaces operate, and because it is
a suitable level for the agency to use in the initial definition of products desired
from the system. For example, it is relatively easy for forest managers to define
an updated forest inventory map as the result of overlaying polygons of recent
fires on existing forest inventory polygons, but any lower level of sub-task
definition would presume substantial familiarity with one or more GIS.

There is a long history of debate in the performance evaluation field over
the extent to which one should regard the system as a black box, observing the
response of the system to given inputs in a purely empirical context, or whether
the approach should be to some degree determined by knowledge of the
algorithms being used. For example, we might expect the major factor deter-
mining execution time in an algorithm for a raster polygon overlay to be the size
of the raster cell, whereas a vector algorithm would be more likely to depend on
counts of polygons. Lehman (1977) makes this point and notes that the need for
empirical, black box evaluation of performance is in fact somewhat paradoxical
since the system under study is in principle perfectly understood. An interesting
commentary on the field by Wegner (1972, p. 374) urges ‘a proper balance
between quantitative statistical techniques and qualitative techniques of struc-
tural analysis’, although, somewhat surprisingly:

‘Computer science is different in character from empirical disciplines such as
agriculture or physics. Agriculture and physics are concerned with the study of
natural phenomena, while computer science is concerned with the study of man-
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made phenomena. A computer system generally has a far larger number of
independently: variable components than the systems studied in agriculture or

physics.’

The debate would seem to be more complex in the GIS field where there is no
control over the choice of algorithm used to perform a given sub-task, and where
some of the operations being modelled are manual or contain substantial manual
components. For example, it is essential to have a satisfactory model of digitizer
throughput, including the time spent by operators correcting errors, if one is to make
adequate projections of the number of shifts necessary to complete a given work-
load of digitizing. In fact this has been one of the more uncertain elements in many
acquisitions of GIS.

There is, of course, no chance that predictions of system use made from the
results of performance evaluation will be perfectly accurate. Many of the factors
influencing throughput cannot be predicted in advance, and others can be predicted
only with considerable uncertainty. Obvious candidates in the first category are
various types of failure of hardware and software. The task is best seen as a
compromise between an excessively elaborate model on the one hand, which would
require too much data and rigid adherence to planned production schedules and
would be too sensitive to uncertainties, and, on the other, too little effort at assessing
the degree to which the planned work-load lies within the capacity of the proposed
system. We assume that the alternative of no prior evaluation of work-load is unac-
ceptable.

The empirical or statistical approach to performance evaluation has been
discussed in a number of articles (see, for example, Gomaa, 1976; Grenander and
Tsao, 1972; Yeh, 1972; Bard and Suryanarayana, 1972; Racite, 1972), and the
associated problems of experimental design have been discussed by Nelder (1979).
The conventional technique is ordinary least squares regression, although Grenander
and Tsao (1972) comment that its use cannot be too rigid since it is usually
impossible to meet the inferential assumptions of the technique. Racite (1972)
discusses the use of non-linear regression.

Formal model

A formal model and notation for the process of acquisition and bench-marking,
following the conceptual outline given above, are now presented.

The agency has defined a set of products R, R,,..., R;,..., each one in the
form of a map or tabular printout or some combination of the two, and each one
requiring the execution of a sequence of GIS operations or sub-tasks. The number
of each type of product required in each year j of the planned period is denoted by
Y;. The sub-tasks are defined by an ordered set which may include several execu-
tions of the same type of sub-task, for example several polygon overlays. The
sequence of sub-tasks for product / is denoted by

9"?&;.%9...%:...- 4))

where each sub-task is drawn from a library L, S; ¢L for all i, ¢.

Each sub-task ¢ in the library is associated with a number of measures of use,
drawn from a standard set M. Each measure m,, acL, keM, represents some
demand on the system, such as c.p.u. time, opérator time, plotter time or
requirements for disk storage, with appropriate units of measurement. The value for
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each measure for a given task can be predicted from one or more predictors P,
drawn from a standard set P; aeL, keM, neP. The predictors for each measure are
quantities such as numbers of polygons which can be estimated in advance for each
of the required products and used to estimate total resource utilization. Note that
the set of predictors for a given measure may vary from sub-task to sub-task. The
predictive equations for each measure are functions

5:» ".\ﬂmvnw_nwns\....vnt:...v ANV

calibrated by least squares regression or other means. The precise choice of func-
tion will be determined by a combination of empirical investigation and analysis of
the structure of the sub-task.

To estimate the use of system resources, the required sub-tasks for each product
are examined. The predictors for each measure are determined from the planned
production schedule and used to evaluate the appropriate form of the predictive
equation (2). Let W, represent the predicted utilization of resources measure k,
keM, by the tth sub-task in generation of product i. Its value will be estimated by
using the predictive equation for measure k in sub-task a=3S,;. The predictors P,
will be replaced by estimates of work-load determined from the planned production
schedule, Pay = Ui, a=S;, where Uy, denotes the planned value of the nth
predictor of measure k for the fth sub-task of product i. In most cases predictors
will be estimated by examining source documents.

The measures are then summed for the product as a whole

v—\a:. = Wu vw\::.- va
and across products, weighted by the number required in each year
Vi = IWnYy 4

to give the total resource requirements which can be compared to known capacities.

Empirical analysis

We now examine the extent to which this approach can be usefully applied to an
operational GIS. In particular, the following section looks at the extent to which the
conceptual level is appropriate for the definition of sub-tasks, and whether useful
predictions of work-load can be made at this level. In terms of the formal model,
we examine the extent to which the prediction functions J can be determined by
analysis of bench-mark performance data. We then describe an implementation of
the model which takes bench-mark results and combines them with planned work-
loads to make estimates of resource utilization.

The Canada Land Data System (Canada Geographic Information System
(CGIS)) was. designed in the early 1960s as a system for input and analysis of a
national land capability survey, consisting of multiple layers of polygon data. Its
most significant features are the use of a scanner for data input, conversion to vector
organization for storage, and a raster algorithm for polygon overlay. Other features
of the system will be noted during the discussion which follows. The data to be
analysed were collected during regular production as part of the everyday internal
auditing process of CGIS.

The data sets were all processed as part of a larger study of land-use change
in Canadian metropolitan cities. Four coverages were processed for each of six cities:
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Windsor, London, Kitchener, Hamilton, Regina and Montreal. All input was
obtained from complete 1:250,000 map sheets, the number of sheets varying from
two in London to nine in Montreal. One sheet was shared between Hamilton and
Kitchener, so its input costs were incurred only once. In total 104 sheets were input,
for each of 26 map sheets and four coverages. .

Three major sub-tasks have been identified in the input process for the purpose
of this study, and the resource utilization is expressed in dollars. Before scanning,
each input document must be copied by hand using a scribing tool, to control width
of line and to insure against spurious input. The costs of scribing (SCRIBE) are
largely those of labour and can be assumed to depend on the length of polygon
boundaries being scribed, and also to some extent on the irregularity of the lines and
on the density of features. Following scanning, the raster data are vectorized and
merged with polygon attributes in process referred to as steps 0 to 4, for which cost
(denoted by Z4) is primarily a function of computer use. CGIS processes its data
through a service bureau, so that costs given are those billed by the bureau, as
distorted by peculiarities of the billing algorithm and such factors as overnight
discounts. The third cost is that of manual error correction (MEC), which occurs
during input processing and consists of the labour required to identify and remove
errors detected by software during vectorization and polygon building.

Only one predictor is available for the three sub-tasks, in the form of a count
of the number of polygons on each sheet. Although many more sensitive predictors
might be obtained from the data after input, such as counts of coordinate pairs or
line lengths, it is relatively easy to estimate polygon counts for typical map sheets
in advance. The four coverages used in the study are shown in Table 1.

Table 1. Coverages used in the study.

Code Theme Mean polygon count
040E, F Study area outline 3.2
100E Recreation capability 59.7
200E Agricultural capability 238.5
760X Land-use change 1142.4

The theme of each sheet accounts for a large amount of the variance in input
costs: 40.1 per cent of SCRIBE, 45.3 per cent of Z4 and 28.2 per cent of MEC. But
almost all of this is because of variation in polygon counts; although each type of
coverage has different conditions of shape of polygon and contortedness of line,
disaggregating by coverage produces no significant improvement in the ability to
predict costs once allowance has been made for polygon counts.

The best fit was obtained by a double logarithmic or power law model of the form

m=ap® )

where a and b are constants, calibrated by regressing the log of each measure against
the log of the predicator, in this case log(cost) against log(polygon count). Logarithms
are to base 10. The results from the 104 cases available are shown in Table 2.
The manual operation of scribing has the most predictable costs in terms of
variance explained. Assuming no variance in shape, on purely dimensional grounds
it would be expected that the total length of polygon boundaries on a map sheet
would be proportional to the square root of the number of polygons. However, the
regression shows that the costs of scribing rise with the 0.69 power, indicating that
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Table 2. Regression analysis of cost against polygon count.

Variance explained Standard error

Sub-task (per cent) b of estimate
SCRIBE 84 0.69 0.30
Z4 72 0.31 0.19
MEC 68 0.53 0.25

a higher density of polygons requires more effort per unit length of line than the
added line length would suggest, presumably owing to the added complexity of
working with high densities.

We expect the vectorization steps to be relatively insensitive to the number of
polygons, and indeed the calibrated power is the lowest at 0.31, indicating that a
doubling of cost will permit the processing of a sheet with approximately eight times
as many polygons. The costs of manual error correction rise with the 0.53 power,
suggesting either that the probability of error is dependent on length of line, or that
the difficulty of correction is approximately twice as great for a sheet with four times
as many polygons.

The standard errors of estimates are given above for each of the three sets of
costs. Since the regression was performed on the logs of the costs, a standard error
of e must be interpreted as meaning that the error of prediction from the model is
typically a factor of 10°. In the case of SCRIBE, which has the largest standard
error, the typical error factor is therefore 2.0, meaning that we will commonly
observe actual scribing costs which are half or twice the predicted value. Although
this is a substantial uncertainty, it is very much less than the range of costs of
scribing map sheets, which vary from a low of $2 to a high of over $2,000.

This method of computing prediction error must be treated as conservative for
a number of reasons. Firstly, it assumes that the parameters in the model are
estimated correctly. In reality, both @ and b are subject to uncertainty, which in turn
increases the uncertainty in predictions. Secondly, if we assume that residuals from
the model are normally distributed, then the transformation which must be applied
to allow for the use of logs will give a disproportionately large influence to large
residuals. Thus, although 10¢ may be typical of error factors, the mean error factor
may be substantially higher.

After completion of the input steps, including edgematching of adjacent sheets,
the data were merged into six databases, each with four coverages. The coverages
were then overlaid using CGIS polygon overlay algorithm which employs raster
techniques to superimpose vector data structures. Both c.p.u. time and billed cost
were available as measures for each overlay, the relation between them being
proprietary to the computer service bureau and compounded by CGIS decisions
about job scheduling. Linear regression of overlay cost on overlay time showed that
only 74 per cent of variance in cost is accounted for by variance in c.p.u. time for
execution. Total input costs for each city’s data were also available, but gave results
which added little to those already obtained for the map sheet data: since the largest
component of input cost is scribing, regression of total cost on polygon count gave
results very similar to those shown above for SCRIBE.

The results of regressing log (overlay cost) and log (overlay time) on the logs
of various polygon counts are shown in Table 3 in terms of the variance explained.
The increase in uncertainty introduced by the billing algorithm is clear in all cases.
Not unexpectedly, given the nature of the overlay algorithm, the best predictor is
total output polygon count, reflecting the cost of revectorizing the image after
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ilding attribute tables for the new polygons. The estimated power is
Mwnuwﬂ_m”n .M”_va_.mnm well with the power of the Z4 vectorization above. The stan-
dard error of estimate is 0.14, or an error factor of 1.4. Although counts of output
polygons would not be available as a prior predictor of %&2: work-load, they are
linearly related to total input counts for these data; each _.E.Eﬁ polygon generates,
on average, 2.54 output polygons, the input count oxv_.wEEm.mu per cent .3. the
variance in output count. The standard error of 8&5»8. if log (input count) is used
to predict overlay time rather than log (output count) is 0.16 rather than 0.14.

Table 3. Variance explained when overlay cost and overlay time are regressed against
polygon counts.

Polygon count Time (per cent) Cost (per cent)

Total output 85 31
Total input 79 27
040E/F 80 53
100E 59 44
200E 81 46
760X 73 21

Also shown are the results of using polygon counts from each of the four
coverages individually as predictors. Although none is as mcmoomm?_ as total o::E.r
it is interesting that the counts of polygons on three of the input coverages nxu._w:.
almost as much variance. The results confirm an expectation that c.p.u. :En. ina
polygon overlay would be closely related to polygon counts on the most dense input
coverages, but also suggest that polygon counts on the least dense coverages are also
useful predictors.

From this analysis it appears to be possible, given stable software and hardware
and sufficient data, to model the performance of a GIS at the level of the concep-
tual GIS sub-task, and to obtain reasonably accurate predictions of resource use.
As was noted above, there is no possibility of perfectly accurate modelling; on the
other hand, any reduction in uncertainty is presumably wm:.ou than pure guesswork
in system planning. The same basic approach of curve fitting seems to be oﬂ:».:«
as suitable for machine use as for purely manual and mixed manual and machine
operations. The next section describes the operationalization of the complete model,
including calibration steps and work-load estimation for a set of planned products,

in an interactive package.

Implementation

The first author and Tomlinson Associates have implemented the formal Boanm and
the calibration procedures discussed above in a package for Zm-_.uOm systems iden-
tified as SPM. It is structured in eight interdependent modules linked by a master
menu, as shown in Table 4. Module 6 allows the user to choose from a wide range
of possible models, including additive and multiplicative combinations of En&n.&&
and various transformations of variables. The values of constants can be obtained
either by ordinary least squares, or by direct input by the user. )

A recent test of the approach used data obtained by Tomlinson >mm.o9w8m from
a study of the GIS requirements of a US National Forest. Forest Service m"m:. _E.n
previously identified a total of 55 GIS products which they planned to use in a.ro:
resource management activities in the first 6 years of operating a GIS. The combined
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Table 4. Master menu showing modules of the SPM system.

Module Function

1 Build, edit or retrieve the library of sub-tasks L.

2 Input ordinal performance scores for each sub-task from the results of a
qualitative bench-mark test.

3 Input definitions for a set of required products R,, R,,..., Rj,..., including
required processing steps.

4 Generate a statistical report based on the ability of the system to produce the
required products, given the input performance score.

5 . Input values of suitable performance measures chosen from M, and predictors
chosen from P, from the results of a quantitative bench-mark test.

6 Construct and calibrate suitable models f of each sub-task from the data input
in the previous step.

7 Input predictor values U measuring intended system workload for each product.

8 Compute and generate a statistical report giving cumulative estimates W of
resource use for the intended work-load.

production task required a total of 65 coverages or data types to be input to the
system, and a total of 51 different GIS functions or sub-tasks to perform the
required manipulations. The number of sub-task steps required for each product
ranged from five to 24.

Because of the effort involved, bench-mark performance models were
constructed using SPM only for the eight most resource-intensive sub-tasks,
including polygon overlay, generation of buffer zones and edgematching. Four
measures were used: c.p.u. time, personnel time, plotter time and disk storage bytes.
The predictive models relied on a total of 11 different measures, including polygon,
line and point counts as appropriate to each sub-task. The final results were
expressed in terms of total resource requirements for each produgt in each year of
production, given the bench-marked hardware and software configuration.

Discussion

Agencies acquiring GIS have had to contend with considerable uncertainty, firstly
over whether the system being acquired could indeed perform the necessary
manipulations of spatial data, and secondly over whether the computing resources
of the system were sufficient to meet required production schedules. GIS software
has now reached a stage of development where much of the first form of anxiety
has been removed: functions such as polygon overlay and the generation of buffer
zones now perform with reasonable efficiency in most systems. However, not many
models of system performance required to reduce uncertainty of the second type yet
exist.

The most critical step in modelling performance is the definition of sub-tasks.
The conceptual level of defining sub-tasks used in this paper matches the level used
for most user interfaces in GIS, and is readily understood by agency staff not other-
wise familiar with GIS operations and concepts. The empirical section of this paper
has shown that it is possible to model performance at this level, even though sub-
tasks may include substantial manual components and may have to allow for
unpredictable events such as the failure of hardware.

It was noted earlier that any successful attempts at modelling must not simply
approach a system as black box, but use knowledge of the complexity of sub-tasks
and GIS algorithms to anticipate appropriate predictor variables and their role in
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the form of predictive models. This point also applies to the design of bench-marks,
since the same arguments can be used to make suitable choices of measures and
predictors, and to design appropriate variations of the key parameters. The number
of independent runs required to obtain a reliable calibration of a given model is also

. determined by the number of variables and constants appearing in the model;

conversely, the choice of possible models is constrained by the number of indepen-
dent bench-mark tests made of each sub-task.

In this paper it has been assumed that the hardware and software configura-
tion bench-marked is also the one proposed for production: no attempt has been

“made to develop models valid across configurations. To do so would add a new level

of difficulty to the modelling which is outside the context of the present study. On
the other hand, the choice of the conceptual level for defining sub-tasks allows the
same general strategy to be followed whatever the configuration,

This last point restricts the applicability of this approach to the context defined
in the introduction, that of a vendor or agency wishing to make a reliable estimate
of resource use for a given work-load and a given system. It is not useful for an
agency wishing to make a comparison between alternative systems, except as a means
of developing information which might later form the basis of the comparison.
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