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A GENERAL FRAMEWORK FOR THE SPATIAL INTERPOLATION OF SOCIOECONOMIC DATA
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Abstract
Spatial data are collected and represented as attributes of spatial objects embedded in the plane.
We define basis change as the transfer of attributes from one set of objects to another. Methods of basis
change for socioeconomic data are reviewed and seen to differ in the assumptions they make about
underlying density surfaces. We extend these methods to more general cases and provide an illustration

using California data. The implementation of this framework within a GIS is discussed.

INTRODUCTION

Geographic Information Systems are being increasingly used to support a variety of forms of spatial
and regional analysi‘s, using social, economic and demographic data. The databases which these systems
access are discrete digital representations of real spatial variation using one of a number of standard
discretizations or data modcls (for review see Burrough 1986). Variation can be described by attaching
attributes to a set of spatial objects, which may be points, lines or areas, embedded in the plane. Thus the
behavior of a variable such as population density is often described by attaching the density attribute to each
of a set of reporting zones which collectively partition the plane. But equally we might represent the same
spatial variation by attaching attributes either to a set of contours (line objects), or to a set of zone
centroids (sample points). Each of these options has its own advantages and disadvantages in terms of
accuracy of representation, storage and processing efficiency. We define the set of discrete objects used to
describe the spatial variation of a parameter as its spatial basis.

The basis of social and economic statistics is usually defined independently of the variable itself,

through the use of a set of reporting zones. In this sense social and economic data models are different
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from those commonly used for environmental data, where the basis is derived from, and therefore unique
to, the spatial variation itself (Mark and Csillag 1989). The arbitrary nature of such socio-economic
reporting zones leads immediately to the difficulties known as the Modifiable Areal Unit problem
(Openshaw and Taylor, 1981; Openshaw, 1984), or the dependence of the results of spatial analysis on the
arbitrary spatial basis of the data used.

A change of the spatial basis of regional analysis can be defined as the process of transferring
attributes from one set of spatial objects to another. An example bf such basis change is the point
interpolation problem where the variable z is known for a number of points (x,y) but is needed at another
point for which no data is available (Bennett er al., 1984; Lam, 1983). A different case might be where data
is available for a set of points but, is needed for a system of areas or zones (Bracken and Martin, 1989).
Arbia (1989) has described the general problem of basis change and outlined an approach based on a space
partitioned into discrete units. In this paper we assume space to be continuous, and feel that our approach
is therefore more general.

The commonest form of spatial basis change for socioeconomic data occurs when data must be
transferred from one set of reporting zones or areas to a second, independent set (source and target zones,
respectively). This has been referred to as areal interpolation (Goodchild and Lam 1980; Lam 1983;
Flowerdew and Openshaw 1988), and arises because of the general lack of coordination between agencies.
Different departments, or even different offices in the same department, publish data based on a number
of zonal arrangements that are often incompatible (e.g., counties, Standard Metropolitan Statistical Areas,
labor market areas, hydrologic study areas, etc.). Reporting zones often change through time, making
longitudinal analysis difficult. Recently, marketing applications have begun to create a demand for statistics
based on postal zoncs, which have been defined solely for the efficient delivery of mail and are thus
incompatible with any other zone system.

These issues create significant problems for regional and multiregional analysis and modeling, which
require both cross-sectional and longitudinal data and must often combine data from different sources. The

data models and geometric algorithms of GIS provide a suitable environment for the development of a set
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of general procedures for spatial basis change for socioeconomic data. The purpose of this paper is to lay
the groundwork for such a set of procedures, by presenting a general framework and by reviewing and

extending existing methods.

GENERAL FRAMEWORK

The fundamental unit of spatial data is the tuple {x,y,2,,Z,...,Z,} Where z,,z,,...,z, represent the values

of n variables at location (x,y). Since both x and y are measured on continuous scales, the number of tuples

required to describe the complete variation of z; through z, is infinite. However the presence of strong
positive spatial autocorrelation in most spatially distributed variables ensures that a number of forms of
discrete approximation will be acceptably accurate.

Unfortunately most socioeconomic variables are not directly observable in this form. For example,
it is not possible to visit location (x,y) and determine population density or average personal income as an
attribute of that point. Instead most variables must be observed in the form of integrals or averages over

finite areas, and reported as attributes of a discrete set of objects, each of finite spatial extent:

P, = ,pdA M

where p(x,y) is the unobservable population density, A, is the area of zone i and P, is the zone’s population.
The minimum size of A depends on the variable. While a single block might yield a meaningful population
count, statistics based on firms clearly require larger areas.

We can place various interpretations on the unobservabilityvof p(xy). Population is discrete, so it
becomes impossible to approximate its distribution by a continuous function below a certain level of spatial
resolution which itself depends on density. In the limit p takes only two values, finite at points occupied
by people and zero elscwhere. However each individual’s location is fundamentally uncertain because of

data collection errors, migration, diurnal movement and geodetic imprecision, so p(x,y) could be interpreted
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as the aggregate of a set of probability distributions. Similar arguments apply at appropriate scales to other
socioeconomic variables.

Much of the following discussion will be concerned with population density p as an example of a
spatially distributed variable. Its integral P is observable over reporting zones above some minimal size, and
other dcnsities, such as gross income density, have similarly observable integrals. Ratios or averages, such
as average personal income, are interpreted as the ratio of two densities or integrals, in this case gross
personal income divided by population. Goodchild and Lam (1980) refer to spatially integrated densities
as spatially cxtensive, and to the ratios of densities as spatially intensive.

The success of any basis change depends on the accuracy with which the underlying continuous
variable p can be estimated or modeled, and thus on the accuracy of hypotheses about the form of p. In
the following sections we review a number of altcrnative hypotheses from previous work on the basis change

problem.

Radially Symmetric Kernel Functions
It is possible to modcl the variation in population density over a city using a radially symmetric

function such as:

p(r) = poc” €]

where p, is the central density and b is a constant. The literature records abundant tests of this and similar
functions (Clark, 1951; Parr, 1985). However these monocentric models scem to be becoming less accurate
with the transition to polycentric cities, particularly in North America. Moreover, from the perspective of
basis change it scems unlikely that onc would know the central location and central density (or total
population) of a city, but not have additional information on variation of density within it. Nevertheless,

Honcycutt and Wojcik (1989) have recently used a circular Gaussian function to estimate a continuous
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surface of population density for the coterminous United States from point data on city locations and
populations.

In many countries it is possible to obtain digital boundary files for the larger census reporting zones,
but the sheer numbers of the smaller units make this impractical. The geographical locations of the
Enumeration District or Enumeration Area level (100-200 households) in the United States, United
Kingdom and Canada are available in digital form only as "centroids” or representative points, usually placed
in the area of highest density within the zone. Bracken and Martin (1989) describe a technique for
estimating a continuous density surface from this data, as an essential step in basis change. A kernel
function is defined to distribute the population at each centroid uniformly over a disc whose radius is
determined in each case by an analysis of the locations of nearby centroids, in an adaptive form of dcnsity

estimation (Silverman 1986).

Maximally Smooth Estimation

Tobler (1979) proposes the term pycnophylactic to describe a method of estimating a density surface
which is density-preserving, in the foliowing sense. Suppose the plane is partitioned into a set of zones
indexed by i, i=1,...,n, each with known area A, and known population P, An estimation method for p(x.y)
is pycnophylactic if equation (1) above holds for every zone. Clearly this condition is not sufficient to
estimate the surface, and many mcthods will have the pycnophylactic property. Tobler’s method establishes
additional boundary conditions on the surface p, for example that p=0 at the edge of the partitioned area,
or that the gradient of p is zero at the edge. An iterative procedure finds a solution which satisfies these
constraints and minimizes the curvature of the surface. However the minimum curvature objective derives
morce from a desire for simplicity and a lack of alternative hypotheses than from any observations about real

population density surfaces.




Piecewise Approximation

These methods partition the plane into zones of relative homogeneity, and then model the variation
of density within each zone using a simple function. The possibility of using a constant value of density
within each zone is suggested by the tract form of much housing development in recent years, and by the
element of homogeneity in the definition of many census reporting zones, particularly census tracts.

Goodchild and Lam (1980) examined the case where one can reasonably assume that the source
zone density is constant. The derivation of target zone estimates is straightforward. If we denote the area
of overlap between source zone s and target zone t by a,, and the known source zone population by U,, the

target zone population, V, can be estimated by:

Ve = 5, U @@/ Za0 (€)

Note that as is appropriate for a spatially extensive variable such as population, the elements of the
areal weight matrix are standardized over the total target zone area. The resulting coefficients thus
represent the share of the area of source zone s that lies within target zone t and the source zone statistic
is allocated accordingly over target zones.

Flowerdew and Green (1989) describe the case where auxiliary information is available to assist in
estimating target zone densities. In their example, the target zones are political voting districts, and a binary
variable (Conservative or Labour Party representation) is available for each target zone. Letting , and ,
represent the population densities of Conservative- and Labour-held districts respectively, the expected
population of source zone s is given by A, + ,A, where A, and A, are the areas of overlap between
the source zone and Conservative- and Labour-held target zones respectively. The parameters , and ,are
estimated by regressing the known source zone population on the known overlap areas, using Poisson
regression since the observed source zone population is integer and presumed to be sampled under a Poisson

distribution.




Generalization I: uniform target zone densities

In this and the subsequent section we generalize the Goodchild and Lam (1980) and Flowerdew and
Green (1989) approaches. Suppose that for some reason or other the population distribution can be
assumed to be constant within the target zones for which data has to be derived. This might be the case
where the source zones are drawn as arbitrary political boundaries, whereas the target zones follow clearly
distinguishable physical features (e.g., steep slopes versus grass land) in which the homogeneity assumption
is reasonable. Provided that the number of source zones n, is larger than the number of target zones n,
population densities for the target zones, d, can be estimated using the observed source zone populations,

U,, and the areas of overlap of source zone s with each target zone t:

U, = 3.4 a, | 0

If the number of source zones is equal to the number of target zones, n,=n,, one can solve for the
densities by inverting the area weight matrix A, which will be square in this case, provided A has an inverse.
If n<n,, then densities can be estimated as coefficients in a linear regression forced through the origin.
Since U, will be integer in the population case, we should use Poisson regression. However, in other cases
such as gross income, the dependent variable will be the sum of continuous variables, and the Gaussian
error model implicit in OLS will be more appropriate.

If n,>n,, the d’s will be indeterminate unless further assumptions can be made. Flowerdew and
Green (1989) assume that target zones fall into a smaller number of classes. In effect, they use an
aggregation of target zones (n=2) for the estimation of source zone densities, and a subsequent
disaggregation for the estimation of target zone populations. Since spatial arrangements are represented
in these methods only through the areas of overlap, zones can be aggregated whether or not they are

actually contiguous in space.




Gencralization II: control zones

Suppose the analyst has access to a third set of zones, here referred to as control zones, which are
believed to have constant densities. We will denote these control zones by the index ¢ and the unknown
density of these zones by d.. The areas of overlap between source zone s and control zone ¢ will be denoted
by a, and between control zone ¢ and target zone t by b,. Assuming that there are fewer control zones

than source zones (n.<n,), the control zone densities can be estimated as before using the equations:
U = Z.d.a &)

using the known source zone populations and areas of overlap.
The target zonc populations can then be derived by integrating the piecewise population density

surface represented by the ds over the areas of each target zone:

e dc by | ©)

Note that there are no restrictions on the number of target zones in this case. The Flowerdew and Green
(1989) example creates control zonces using surrogate information presumed to be helpful in estimating
densities, but requircs the control zones to be congruent with target zones (or aggregates of target zones).

Since the control zones can be independent of both source and target zones, we see a major
advantage of this approach in the frecdom which it gives the analyst to introduce additional knowledge into
the estimation proccss. The boundaries of the control zones necd not be defined very carefully, but may
simply express the analyst’s personal experience of the arca in relatively imprecise and general térms. In

the next section we describe an illustration of the use of this method to a simple estimation problem.




ILLUSTRATION USING CONTROL ZONES

The Data

We now illustrate the use of control zones with an example application for regions in the state of
California. As is typical of all states in the United States, most socioeconomic data for California are
published on the level of the 58 major civil divisions or counties. Data related to water issues, however,
are gathered and distributed according to 12 hydrologic study areas that follow major watershed boundaries.
As can be seen in Figure 1, the boundaries of the two zonal systems are largely incompatible.

[Figure 1 about here]

The information published for the 12 basins consists not only of hydrologic data, but also data that
is of direct relevance for socioeconomic modeling and that is available only on this spatial basis, e.g., water
use by major industry, or residential water consumption. Recently, the California Department of Water
Resources (1980) developed a multiregional input-output model for the 12 hydrologic basins for an economic
impact study. For this purpose, all output, employment, income, and population data had to be transferred
ffom the basis of counties to the hydrologic regions. The areal interpolation method applied in this study
consisted of direct arcal weighting from counties to basins assuming uniform source zone densities. In the
following paragraphs it will be demonstrated how such estimates can be improved by introducing a third set
of control zones.

The performance of the method will be evaluated using population figures for 5377 census tract and
cnumeration districts in California. The data provide population counts for representative points within
each zone, using census tracts (average population about 4,000) in major cities and enumeration areas
(average population about 500) clsewhere. This information is available from the State Census Center of
the California Department of Finance (1982) for the population census years, in this case 1980. When
included in a GIS, this covcrage allows for casy reaggregation to any set of zones. While this approach will
still have an inhcrent unknown error because of incompatibility between census tracts, enumeration districts

and hydrological basins, for the purpose of most analysis the accuracy thus attained should be sufficient.
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The control zones in this example application are based on four subjective divisions that are
assumed to show a homogeneous or constant population density. These are the urbanized regions in the
Bay area, the Southern California metropolitan area, the agricultural region of the Central Valley, and the
rest of the state as a residual. By means of a GIS these regions can be designed interactively by a user who
is familiar with the study area. The state of California displays extreme population density gradients even
within counties, so the uniform source zone density assumption of Goodchild and Lam (1980) and the earier
input-output study are clearly highly inaccurate. The desert counties of Southern California (Riverside and
San Bernardino) contain both cxtensive unpopulated areas and parts of the heavily populated Los Angeles
basin, and similar contrasts can be found clsewhere in the state. Our purpose is to show that a small
amount of subjective information can produce a substantial improvement in the accuracy of the results when
compared with the naive assumption of uniform source zone densities.

The four control zones shown in Figure 2 were entered by eye on a screen display of the entire
state, using a screen cursor. We cstimate a positional accuracy of 10km for this step, compared with much
higher positional accuracies (better than 1km) for the source and target zone boundaries and for the
reference point dataset. Equation (5) was used to estimate the four unknown control zone densities by
OLS, and equation (6) was then used to estimate target zone populations. The accuracy of the technique
was determined by comparing target zone populations with the values obtained by aggregating the point
dataset. The latter were assumed to be true: no attempt was made to evaluate the error inherent in the
aggregation.

[Figure 2 about here]

Technical Issucs

A technical problem was encountered in the OLS estimation of the population densities of the
regions. For Zone 1 (the rest of California), an area that has a very low density, the regression resulted
in a negative coefficient. This can be avoided by constrained regression (e.g., Stein rule estimation, Judge

and Yancey 1986) or by sctting the problem coefficient to zero and reestimating the remaining coefficients,
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or by using some prior (again possibly subjective) estimate of density. Table 1 shows the population
densities for each of the regions as derived from the point coverage, and by estimation where the density
for Region 1 is constrained to zero, and by estimation constraining Zone 1 to its true value as obtained
from the point data.

[Table 1 about here]

The table shows the very sharp contrast between the high densities of the major urban areas
(691.4/km’ in Zone 4 according to the point data) and the much lower densities of Zones 1 and 2 (11.5/km?
in Zone 1). Note that the method overestimates the densities of the two major urban areas. In reality the
densities of the areas in Zones 1 and 2 close to the boundaries of Zones 3 and 4 are higher than elsewhere,
which tends to bias the Zone 3 and 4 density estimates upward.

Table 2 shows the estimated populations for the hydrologic basins, the percentage error for the
individual estimates, and the mean absolute percentage errors (MAPE). For both approaches that employ
the control zone densities, the MAPE is considerably smaller than for the direct area weighted estimates
(59.6 and 86.5 versus 124.2). Table 3 presents a number of summary statistics of the agreement between
known and estimated hydrologic basin population.

[Table 2 about here]
[Table 3 about here]

Because equation (5) estimates the d_s by forcing through the origin, the total of the estimates of
the U,’s does not in general equal the known total state population. Nor is there an accounting constraint
in equation (6), as Table 2 shows. The use of OLS ensures that R* is rﬁaxﬁmized in the estimation of the
-U,’s, but does not ensure the maximization of R? or any of the other measures of goodness of fit between
the known and estimated Vs shown in Table 3. In general, we do not know whether the goodness of fit
measures in Table 3 would improve or deteriorate if an accounting constraint were imposed by
proportionally adjusting the estimates.

As noted previously, the intent of this illustration is to show the versatility of the method, and the

degree to which a small amount of subjective information, in the form of four crudely defined zones, can
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improve on the assumption of uniform source zone density. We do not wish to suggest that four zones are
adequate, or that the errors in the estimates shown in Table 3 are acceptable for any practical purpose. In
reality, there is a direct correlation between the information provided by the analyst and the accuracy of the
results. In this case, one would expect continued improvement in the quality of estimates as the number
of control zones increases, up to the limit of the number of source zones. But the concept of the control
zone seems to provide a relatively efficient way of introducing a limited amount of information into the

estimation process.

IMPLEMENTATION ISSUES
We have argued that the problem of basis change for socioeconomic data can be seen as one of
estimating one or more underlying density surfaces. The different methods reviewed above amount to
alternative sets of assumptions about the nature of the underlying surface(s). In this section we first present
a spatial database perspective on the alternatives, and then discuss a number of issues concerned with

implementation of a gencral set of procedures for basis change.

Databasc Issucs

Various methods have been devised for the digital representation of the spatial variation of a
paramecter such as p (Burrough, 1986). The alternatives fall gencrally into three classes, as follows:
Point sampling. The valuc of the variable is obtained at a finite set of points, oftcn arrayed as a grid or
raster. Tobler (1979) uscs this representation for estimates of p in his pycnophylactic method.
Contours. If p is continuous, a sampling of the domain of p defincs a number of linear point sets or
contours, which can be approximated by a finite number of points connected by straight line segménts.
However this representation is inefficicnt as a method of sampling the spatial variation of p; it provides high
accuracy in the ncighborhood of cach contour, but much lower accuracy elsewhcere. |
Piccewisc approximation. As noted earlicr, the plane can be partitioned into zones within which variation

is assumcd to follow some simplc mathematical function. Digitally, the zonces are approximated by polygonal
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boundaries (points connected by straight lines) with associated attributes defining the chosen function. This
data model is an obvious choice for any method of basis change that uses the areas of intersection between
zones, as the latter can be obtained by invoking the GIS procedure of polygon overlay. If p is constant
within zones, then the entire surface can be described by attaching a single value to each polygonal
boundary; discontinuities in the surface occur in general across all zone boundaries. Tobler’s objective of
maximum smoothness in the density surface in the pycnophylactic method stands in sharp contrast to this
model (Goodchild and Lam, 1980), which says in essence that one can learn nothing a.bout the value of p
at a point by looking across a zonc boundary at adjacent points; however close they may be.

If the variable of interest is topographical elevation, it is common to use a variant of piecewise
approximation known as the TIN, or triangulated irregular network (Burrough, 1986), in which the variation
within each zone is assumed to be planar. To avoid discontinuities in the value of p across zone boundaries,
it is necessary for the zones to be triangles. However this model seems inappropriate for socioeconomic
data, where there are no parallels to the propensity of geomorphological processes to create areas of
constant slope.

From a database perspective, the polygonal model with zones of constant density is compatible both
with the likely form of data input, as population values for irregular zones, and with the likely required form
of output. Unlike the pycnophylactic method, it avoids the need for a further internal form of
representation of the density surface. Basis change using methods based on intersection areas can be carried
out by straightforward exicnsions of the polygon overlay operation, by processing the polygonal

representation of various scts of zones.

Estimation Issucs

Using the methods o.ullincd above, the spatial basis can be changed from one set of reporting zones
to another provided that the analyst is willing to assume that either source zones, target zones or some third
set of control zones have uniform density. In the case of target and control zones, densities are estimated

by OLS or Poisson regression. It is also possible for the analyst to introduce additional prior knowledge
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of certain control or target zone densities. Let the control zones be divided into two sets, A and B, where

the densities of set A are known and those of set B are unknown. Then equation (5) becomes:
Us - zA dc s = z:B dc A (7)

where the parameters on the left hand side are all known. For OLS we now require ng<n,. Moreover the
structure of the matrix A in (5) (and appropriate submatrix in (7)) must be such that no column (variable
in the regression sense) is a linear function of any other column or columns. This condition will arise, for
example, when two control zones in set B intersect the same source zone, and no other zone, and becomes
increasingly likely as more control zones move to set A (have known densities). An implemented package
would need to assist the analyst by identifying such conditions.

In general we expect alternative sets of reporting zones for a given area to share certain common
boundary segments, and for the matrix A to be sparse. However, A may be less sparse than expected
because in practice the two digitized versions of a supposedly common line will not in fact coincide, and
small sliver polygons with finite area will produce nonzero entries in certain cells of A (Goodchild, 1978).
These small nonzero entries can propagate into significant spurious estimates of population if they occur

in columns which would otherwise be collinear.

CONCLUSION
The integration of large amounts of spatially referenced socioeconomic data from heterogeneous
sources in geographic information systems leads to an increasing need for reliable methods of spatial basis
change, particularly to overcome problems of incompatible reporting zones. This seems to be equally true
if socioeconomic data has to be interfaced with environmental information, which is likely reported for
entirely incompatible zones. In this paper we have proposed that successful basis change requires the
identification of one or more acceptable underlying continuous surfaces. Various existing methods have been

classified according to the assumptions which they make about these surfaces. In addition, we have looked



15
at the issues involved in representing such surfaces digitally. In essence, the method, and the data model
used for internal surface representation, impose strong and limiting views on the form of spatial variation
of the phenomenon.

The generalization of area of overlap methods to homogeneous control zones appears to offer
substantial potential in allowing the user to input prior knowledge of the area. A package built around this
approach and coupled with the functionality of a GIS could implement a flexible and general capability for
basis change, provided it were able to interact intelligently with the analyst, and give accurate and
appropriate summaries of the options and limitations.

The example used as an illustration in this paper is clearly unrealistic, but serves as a simple
indication of the improvement in accuracy that is possible with a package that can exploit various forms of
prior knowledge. We have described a technique for making use of knowledge of source zone populations,
and control zones whose densities are assumed to be constant, and either known or unknown. Many forms
of prior knowledge seem to fall into this framework, with the notable exceptions of Tobler’s (1979) objective
of minimum curvature, and the literature on urban density functions. However Tobler’s interpolation could

be generalized to allow for discontinuities of density across linear features defined by the analyst.




16

REFERENCES

Arbia, G., 1989, Spatial Dara Configuration in Statistical Analysis of Regional Economic and Related Problems.
Kluwer, Dordrecht.

Bennett, R.J., R.P. Haining and D.A. Griffith, 1984, "The problem of missing data on spatial surfaces.”
Annals of the Association of American Geographers 74:138-56.

Bracken, I. and D. Martin, 1989, "The generation of spatial population distributions from census centroid
data". Environment and Planning A 21:537-43.

Burrough, P.A., 1986, Principles of Geographical Information Systems for Land Resources Assessment.
Clarendon, Oxford.

California Department of Finance, 1982, "Population by census tract and enumeration district for 1980."
State Census Center, Population Research Unit, Sacramento.

California Department of Water Resources, 1980, "Measuring economic impacts. The application of
input-output analysis to California water resources problems.” Bulletin 210, Sacramento.

Clark, C,, 1951, "Urban population densities." Journal of the Royal Statistical Society A 114:490-6.

Flowerdew, R. and M. Green, 1989, "Statistical methods for inference between incompatible zonal systems.”
In M.F. Goodchild and S. Gopal, cditors, Accuracy of Spatial Darabases, pp. 239-48. Taylor and
Francis, London.

Flowerdew, R. and S. Openshaw, 1988, "A review of the problem of transferring data from one set of areal
units to another incompatible set.® Northern Regional Rescarch Laboratory, Research Report No.
4.

Goodchild, M.F., 1978, "Statistical aspccts of the polygon overlay problem." In Harvard Papers on
Geographic Information Systems 6. Addison-Wesley, Reading, MA.

Goodchild, M.F. and N. S-N. Lam, 1980, "Arcal interpolation: a variant of the traditional spatial problem.”

Geo-Processing 1:297-312.




17

Honeycutt, D. and J. Wojcik, 1989, "Population density surface calculation for the coterminous United
States." Presented at ESRI Users Conference 89, Palm Springs, Calif.

Judge, G.G. and T.A. Yancey, 1986, Improved Methods of Inference in Econometrics. North Holland,
Amsterdam.

Lam, N. S-N,, 1983, "Spatial interpolation methods: a review." American Cartographer 10:129-49.

Mark, D.M. and F. Csillag, 1989, "The nature of boundaries on area-class maps." Carrographica 26:65-78.

Openshaw, S., 1984, The Modifiable Areal Unit Problem. Concepts and Techniques in Modern Geography
(CATMOG) No. 38. Geo Books, Norwich, UK.

Openshaw, S. and P.J. Taylor, 1981, "The modifiablc areal unit problem.” In N. Wrigley and R.J. Bennett,
editors, Quantitative Geography: A British View. Routledge, London.

Parr, J.B.,, 1985, "The form of the regional density function.”" Regional Studies 19:535-46.

Silverman, B.W., 1986, Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.

Tobler, W.R., 1979, "Smooth pycnophylactic interpolation for geographical regions.” Journal of the American

Statistical Association 74:519-30.

FIGURE CAPTIONS
1. a) The 58 counties of California (source zones)
b) The 12 hydrologic basins (larget zones)

2. The four control zoncs




TABLE 1

Estimated Population Densities for Control Zones

Population /sq km
Point Based Dens1=0 Dens 1 set
a priori

Zone 1 (Rest of Cal) 11.5 0.0 11.5

Zone 2 (Central Valley) 59.7 585 46.1

Zone 3 (San Francisco) 446.0 476.7 467.3

Zone 4 (Los Angeles) 691.4 859.4 838.5

TABLE 2
Population Estimates for Hydrological Study Areas
Point Estimated Perc. Estimated Perc. | Estimated Perc
Based Population | Error | Population, | Error Population Error
Estimate Area Dens1=0 Dens 1 set
Weights a priori

NC 434229 492404 13.40 138999 -67.99 714822 64.62
SF 4775448 3954032 -17.20 3254029 -31.86 3232440 -32.31
cC 1005486 1436609 43.88 1183665 17.72 1468564 46.06
LA 8047510 5627519 -30.07 6945949 -13.69 6810930 -15.37
SA 2811837 1417893 -350.57 2804334 -0.27 2780204 -1.13
SD 2002046 1908370 -5.68 4401910 119.87 4351458 117.35
SC 1651086 1499991 -9.15 1065513 -35.47 1492151 -9.63
SJ 1018370 1652891 62.31 1102597 8.27 1200062 17.84
TL 1144648 997241 -13.88 1222762 6.82 1218579 6.46
NL 60649 70254 16.84 0 |-100.00 180935 198.33
SL 316634 3033075 858.91 993063 213.63 1710843 440.32
CR 314849 1492515 374.04 0 |-100.00 591852 87.98
23582792 23582792 |124.16 23112820 59.63" 25752841 86.45"

*
Mean Absolute Percentage Error

Hvdrological Study Areas: NC: North Coast, SF: San Francisco, CC: Central Coast, LA: Los Angeles, SA:
Santa Ana, SD: San Diego, SC: Sacramento, SJ: San Joaquin, TL: Tulare Lake, NL: North Lahontan, SL:
South Lahontan, CR: Colorado River .




TABLE 3

Summary Statistics for the Estimation of Basin Population

Area Dens1=0 Dens 1 set
Weights a priori
RMSE 1337363.3 1016017.7 1087321.1
MAE 837921.7 608633.0 675863.3
R”™2 0.44 0.80 0.66
MAPE 124.16 59.63 86.45

RMSE: Root Mean Squared Error
MAE: Mean Absolute Error
R™2: Correlation With Actual Population
MAPE: Mean Absolute Percentage Error
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Figure 1a: The 58 counties of California (source zones). Figure 1b: The 12 hydrologic basins (target zones).



Figure 2: The four control zones




