Chapter 10

Modeling error in objects and fields

Michael F. Goodchild

Introduction

The current interest in spatial databases stems largely from their role in supporting
geographic information systems, and the rapidly growing GIS industry. GISs are
powerful systems for handling spatial data, and in recent years they have found
application in fields as different as transportation, forestry and archaeology. Yet the
power of a GIS to input, store, analyze and output geographic information of all kinds is
at the same time a major liability. To the database, the structure used to store a polygon
or pixel has almost no connection to the real meaning of the polygon, as a parcel of land,
object on a topographic map or stand of timber. The analyst making use of a polygon
overlay operation has similarly little pressure to be sensitive to the interpretation of the
data layers being overlaid. In reality a GIS may encourage poor analysis by separating
the data collection, compilation and analysis functions, and failing to make the user aware
of the possible dangers of indiscriminate use of such functions as scale change,
reclassification and overlay. i

One of the more obvious issues from this perspective is the existence of two
traditions of GIS analysis. The distinction between raster and vector is often seen as a
problem of system design, but actually presents a major issue of data interpretation. To
emphasize this difference, and to stress the context of data interpretation rather than
system design, we will use the terms field and object in this paper, although they are to
some extent synonymous with raster and vector respectively. Some spatial databases
represent the world as if it were populated by objects - points, lines and areas - with
associated attributes, continuing a tradition developed in cartography. Others represent the
world as fields, or arrays of pixels, again with associated attributes. The choice between
the two representations has variously been seen as depending on the method of data
collection (satellites generate fields,cartographers generate objects), the degree of spatial
resolution required (objects appear to imply higher levels of spatial resolution, whereas
pixels imply a level which is fixed by the pixel size), and the efficiency of algorithms (for
example, the widely held perception that overlay is faster in raster). However we will
argue in this paper that fields and objects represent fundamentaily different forms of
abstraction of geographical reality.

This paper examines the relationship between fields and objects from the
perspective of database error. It is clearly possible to represent a given set of data in
either form, and to derive one from the other by a simple GIS operation such as
raster/vector conversion. But conversion must be sensitive to the nature of the data and
its uncertainty if subsequent analysis is to be successful. .
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Errors in objects

Consider the common process of creating a spatial database of objects by
digitizing a topographic map. Attributes will likely be entered from a keyboard, and
provided they are keyed correctly, we can reasonably expect them to be perfectly
accurate. The locations of objects will be obtained by digitizing or scanning, and will be
subject to assorted errors. A number of factors may contribute to distortion of the source
document, including folding and stretching, changes in humidity, copying processes etc.,
and the process of map registration will introduce additional error. If digitizing is used,
positional accuracy will be affected by the operator's precision in positioning the cursor,
and by the rules used to select points to be digitized from line or polygon objects, whether
in point or stream mode. Finally the positional accuracy of a scanned line will be
affected by the resolution of the scanner.

Of all of these errors, only cursor positioning has been subject to successful
analysis. Keefer, Smith and Gregoire (1988) have described a model in which each
digitized point on a line or area object is distorted from its true position by a bivariate
distribution. If each point were distorted independently we would reach the unreasonable
conclusion that the expected error at digitized points is greater than between digitized
points, but it is likely that errors are positively correlated between adjacent points along
the digitized line. Chrisman and Yandell (1988) and Griffith (this volume) have obtained
useful estimates of the expected error in polygon area measures based on this type of
model of digitizing error. However it is much more difficult to devise a reasonable model
of the process of point selection,which varies substantially between digitizer operators
and types of lines, and likely contributes at least as much to error in area estimates.
Unfortunately any such model would have to be sensitive to the type of line being
digitized, as meandering rivers clearly present very different problems from topographic
contours or highways, whereas this seems less important for modeling cursor positioning
error.

* In the case of a county boundary or the outline of a building, the database object
corresponds directly to a clearly defined object in the real, geographical world. But in
many cases the object in the database is an abstract model of real, continuous and
complex geographic variation. Although counties and buildings are frequently found in
spatial databases, many GIS applications have been developed for abstracted objects. In
the forest industry, an inventory of forest resources is commonly maintained in digital
form by dividing the forest into area objects or "stands" with descriptions which are
attributed homogeneously to the entire stand. In reality the boundaries of stands are
transition zones, and the attributes are heterogeneous. Despite the popularity of vector
databases, the object model is often a poor representation of geographic variation.

Greater difficulty may arise if the attributes assigned to an object are themselves
abstractions. For example the term ""old growth"" may be attached to a forest stand, but
ambiguities in the definition of old growth may make it impossible to resolve whether a
particular point within the stand is or is not covered by old growth. Similarly it may be
necessary to observe a significant area in order to assign a classification such as"aspen
parkland”, which is not strictly an attribute of a point,but of an extended area.

Various terms have been used to distinguish between the two types of error
implied by this argument. In this paper we use the term processing error to describe the
uncertainty introduced by digitizing and any subsequent form of digital processing, such
as vector/raster conversion. The term source error is used to describe the differences
which may exist between the object model and the geographical truth which it represents.
While source errors may be absent in representations of counties or buildings,we
conjecture that they will exceed processing errors in representations of such geographical
variates as vegetation, soil or land use. Since the results of a GIS analysis will be
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interpreted by reference to geographic truth rather than to the source documents used to
create the database, the existence of large source errors is a problem of major significance
for the field. Several early papers (see for example McAlpine and Cook, 1971;
MacDougall, 1975) drew attention to the importance of source errors.

The distinction between processing and source error is critical in estimating the
accuracy of measures derived from a database. The error in the estimated area of a forest
stand can be obtained by analyzing the errors introduced in processing its area object, and
is independent of source errors implicit in the object. The area of a given species can be
estimated by summing the areas of the objects classified as containing the species, but
will be subject to source errors if the species attribute does not apply homogeneously to
the area within each stand. Since an object database commonly contains no information
about heterogeneity, it may be difficult or impossible to estimate source errors.

Maps of forest stands or soil types are compiled by a complex process which
combines two forms of data. Information is first obtained on the ground from a series of
point samples or transects, and then extended spatially using an aerial photograph or
remotely sensed scene, or similar image. The area objects are compiled by interpreting a
field, augmented by point attributes, so in these examples the object representation is
clearly a derivative of the field representation. In compiling the map from the image, the
cartographer imposes his or her own expectations on the data. The boundaries between
area objects will be smooth generalizations of complex transition zones whose width will
likely vary depending on the classes on either side. The holes and islands which one
would expect in and around the transition zone will be commonly deleted. Finally, in the
case of forest stands the cartographer may impose some concept of minimum size, since it
is difficult to administer stands of less than, say, 10 hectares. In essence the cartographer
acts as a low-pass filter, removing much of the detailed geographical variation in
converting from field to objects. Unfortunately this removes much of the information on
which an error model might be based, since error is selectively deleted by a low-pass
mm.mnh and suggests that we might focus on modeling errors in fields rather than derivative
objects. :

While some progress has been made in developing error models for digitized lines
and areas, it has proven much more difficult to construct comprehensive models of
processing and source errors for complex geographical objects. Chrisman (1982),
Blakemore(1984) and others have described the uncertainty in the position of a line using
a band of width € (Perkal, 1956), which is a useful model of certain kinds of processing
and source errors but does not deal with the problem of heterogeneity of attributes.
Moreover while the epsilon band can be used to give a probabilistic interpretation to the
point in polygon operation (Blakemore, 1984) it is not adequate as the basis for
estimating error in area measures, or for simulating error in object databases to
benchmark GIS error propagation. At this point we have no fully satisfactory means of
modeling error in complex spatial objects.

Contours provide another example of the difficulty of modeling error in objects
derived from fields. A model of object distortion might take each contour line and
displace it using a random, autocorrelated error process, but it would be easy to produce
topological inconsistencies such as crossing contours or loops. However contours are
derived from an elevation field: no matter how elevations are distorted, the contours
derived from them must always be topologically consistent. This suggests a general
proposition - that the solution to modeling error in complex spatial objects may lie in
modeling error in the fields from which many of them are obtained. In the next section
we explore this possibility in more detail.
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Field models of error in area objects

The previous section concluded with the proposition that mmmmmm.n”oa\ models om
error in complex spatial objects could be formulated as models of error in fields. In this
section we consider two such models. :

Goodchild and Dubuc (1987) proposed a model based on an analogy to the effect
of mean annual temperature and precipitation on life zones. We first generate two random
fields, using one of a number of available methods, such as the fractional Brownian
process, turning bands or Fourier transforms (Mandelbrot, 1982). The autocovariance
structure of the fields can be varied to create a range of surfaces from locally smooth to
locally rugged. Imagine that one field represents mean annual temperature and the other,
annual precipitation.

Holdridge ez al. (1971) have proposed a simple two-dimensional classifier which,
given temperature and precipitation, yields the corresponding ecological zone. By
applying such a classifier to the two fields, we obtain a map in which each pixel has been
classified into one of the available zones. If the pixels are now vectorized into
homogeneous areas, the map satisfies the requirements of many types of area class maps:
the space is exhausted by non-overlapping, irregularly shaped area objects, and edges
meet in predominantly three-valent vertices. On the other hand if a single field had been
used with a one-dimensional classifier, the result would have the unmistakable features of
a contour or isopleth map. To simulate the influence of the cartographer, which we have
previously compared to the action of a low-pass filter, Goodchild and Dubuc (1987)
applied a spline function to the vectorized edges, and selectively removed small islands.

The model has interesting properties which it shares with many real datasets of
this class. Because the underlying fields are smooth, classes can be adjacent in the
simulated map only if they are adjacent in the classifier, so certain adjacencies are much
more common than others. The response of an edge to a change in one of the underlying
fields depends on the geometry of the classifier: it is maximum if the corresponding edge
in4he classifier space is perpendicular to the appropriate axis, and minimum (zero) if the
edge is parallel to the axis. So distortion or error can be simulated by adding distortion to
the underlying fields.

The model successfully simulates the appearance of area class maps, and is useful
in creating datasets under controlled conditions for use in benchmarking spatial databases
and GIS processes, and for tracking the propagation of error. On the other hand the large
number of parameters in the model make it difficult or impossible to calibrate against real
datasets. Parameter values would have to be established for the underlying fields, the
distorting field(s), the classifier, and the spline function used to-smooth vectorized edges.

Goodchild and Wang (1988) describe an alternative model based on an analogy to
remote sensing. Suppose that the process of image classification has produced an array
of pixels, and that associated with each pixel is a vector of probabilities of membership in
each of the known classes. For example the vector{0.3,0.3,0.4} would indicate
probabilities of 0.3, 0.3 and 0.4 of membership in classes A, B and C respectively. In
practice we would expect the proportion of non-zero probabilities to be small, allowing
the vectors to be stored efficiently.

We now require a process of realizing pixel classes such that (1)the probabilities
of each class across realizations are as specified, and (2) spatial dependence between
pixels in any one realization. The degree of spatial dependence will determine the size of
homogencous patches which develop. With high spatial dependence;, a given pixel will
belong to large patches in each realization: in 30% of realizations the example pixel will
be part of a patch of class A, 30% B and 40% C.

Goodchild and Wang (1988) described a simple process which satisfies only one
of the requirements. Initial classes were assigned to each pixel by independent trials, and
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a 3x3 modal filter was then passed over the array, replacing the value of the central pixel
by the modal value of the 3x3 window. While this ensures spatial dependence, the
posterior probabilities are not equal to the priors except in special cases.

More recently, we have experimented with two methods which satisfy both
requirements. In the first, we first generate a large number of realizations using
independent trials. On each simulated map, we count the number of 4-adjacencies
between unlike classes. We next execute a number of cycles to induce spatial dependence
without at the same time changing the posterior probabilities. The two realizations with
the lowest levels of spatial dependence (highest number of 4-adjacencies between unlike
classes) are selected in each cycle. A random pixel is selected, and the contents of the
pixel are swapped between the two selected realizations if the result would yield a higher
level of spatial dependence. After examining a large number of pixels, another pair of
realizations is selected. Because the method conserves the numbers of each class of pixel
across realizations, while increasing spatial dependence, it clearly satisfies both of our
8%&380:8. Finally the simulated maps are vectorized and smoothed to create area
objects.

In the second method, we make use of a simple spatially autoregressive process
(Haining, Griffith and Bennett, 1983), to generate a random field of known distribution,
and classify the result by comparing the value in each pixel to the prescribed probabilities.
Since only two classes can be simulated, the method must be repeated n-1 times to
develop a map of n classes.

Letx denpte the random field. The spatially autoregressive process is defined as:

x=pWx +¢ 1¢3)

where p<0.25 is a parameter of spatial dependence, Wijj=1 if i and j are 4-
adjacent, else 0, and ¢; is a normal deviate of zero mean. We find x by inverting the
matrix (I - p W). Unfortunately an array of n by n pixels requires the inversion of an n2
by n2 matrix, but it is possible to do this for arrays as large as 64 by 64 by taking
advantage of the block structure of the W matrix. Given the known distribution of x;
across realizations, we can compute P(X<x) and compare it to the pixel's specified
probability p.

Certain types of prior information can be introduced into both of these models in
order to broaden their applications. For example, suppose there exists a predefined
"parcel” of known boundaries, and it is suspected that the class or classes within the
parcel are independent of those outside. The parcel boundary is adjusted to pixel edges:
Wi;=0 if i is inside the parcel and j is outside, even though i and j may be 4-adjacent.
This has the effect of removing spatial dependence between the parcel and its
surroundings. The homogeneity of the parcel depends on the magnitude of p; if p is
sufficiently large, the parcel will act as an object whose attribute is determined by a single
trial. Geman and Geman (1984) have described an edge process with similar objectives.

The vectors of probabilities required by this process are readily obtainable from
many remote sensing classifiers. Conventionally, pixels are classified by maximum
likelihood even though the classifier yields a complete vector. This results in the loss of
valuable information on uncertainty, and leads to severe bias in derived estimates of area,
particularly for large patches. The model has only one parameter, p. Its value might be
established by calibration against ground truth, or might be set to reflect expectations
about patch size and map complexity. Inverses of (I- p W) might be precomputed for
various ‘values of p, and multiplied by various € to obtain multiple realizations. In this
way it would be possible to simulate error rapidly for any classified image. Although the
first method above based on swapping between realizations is conceptually simpler, it
does not lend itself as readily to precomputing, and so would be more difficult to
implement in practice.
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Discussion

The process by which a spatial database is created from a source map is complex,
and error of various types is introduced at each step. Some of the error components can
be modeled, and progress has been made in analyzing .50 errors due to cursor
positioning, but others such as point selection are more difficult, and the goal of a
comprehensive model of spatial data processing errors is still elusive. Yet despite this,
for most types of spatial data the errors inherent in the source document are clearly more

- significant than those introduced by processing. This is particularly true when the source

document contains objects which are approximate abstractions of complex and continuous
spatial variation.

We have argued in this paper that many of the more abstract types of spatial
objects have been obtained or compiled from raw data in the form of fields, and that the
process of compilation often removes much of the information on which a useful model
of uncertainty or error might be based. The role of the cartographer in compiling
vegetation or soil maps was compared to the action of a low-pass filter in selectively
removing the high spatial frequencies which contain diagnostic information on
uncertainty, such as wiggly lines and small islands.

From a spatial statistical point of view, the central proposition of this paper is that
uncertainty in the objects on a map results from different outcomes of a stochastic process
defined for a field. This is substantially different from the approach which has underlain
much work on stochastic processes for images. The problem of image restoration has the
objective of finding the"true” value for each pixel given some distorted value, However
in the geographical case there is usually no comparable notion of true value, because
spatial variation extends to all scales, and because class definitions are frequently
ambiguous. Similarly, although spatial statistics contains extensive literature on image
segmentation, this problem is seen as one of a range of possible models for the
cartographic process of forming objects from fields.

From the perspective of spatial databases and GIS, there are several possible roles
for a model of error in spatial data. On the one hand it would be useful to have a
calibrated model which could be used to describe error in a particular dataset, to track the
error through GIS processes, and to report uncertainty in the results of processing.
However such models may be unobtainable in many cases, due to the lack of adequate
information for calibration, and to the complexity of the error process itself, There seems
to be no equivalent with the generality of the Gaussian distribution for complex spatial
objects. On the other hand models of error are useful for generating simulated datasets
under known conditions, for benchmarking GIS processes and storage methods.

Abstract point, line and area models developed in cartography because of the need
to represent complex spatial variation on paper using images which could be created with
a simple pen (Goodchild, 1988). DEMs, TINs and quadtrees are a few of the new data
models which have been developed for spatial databases to take advantage of the removal
of cartographic constraints. The contour was devised as an efficient way to display
spatial variation of elevation on a topographic map with a pen capable of drawing lines of
fixed width, but DEMs and TINs have distinct advantages over digitized contours in
terms of sampling efficiency and the execution of various analytic operations. We have
seen in this paper that the selection of the cartographic model also has the effect of
removing information on uncertainty, since it is easier to model error in fields than in
derivative objects. A database populated by fields is more useful for modeling and
tracking uncertainty than one populated by abstracted objects. From an accuracy
perspective, then, it would be preferable if databases representing spatial variation of
parameters such as soil type, vegetation or land use contained the raw point samples and
images from which such maps are usually compiled. If the cartographic view of the
database were required, it could be generated by interpreting areal objects, either
interactively or automatically. But this strategy would avoid the common practice of
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imposing the cartographic view as a filter between the database and the reality which it
represents.
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