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Abstract

The viewshed of a point on an irregular topographic surface is defined as the area visible
from the point. The area visible from a set of points is the union of their viewsheds. We
consider the problems of locating the minimum number of viewpoints to see the entire
surface, and of locating a fixed number of viewpoints to maximize the area visible, and
possible extensions. We discuss alternative methods of representing the surface in digital
form, and adopt a TIN or triangulated irregular network as the most suitable data structure.
The space is tesselated into a network of irregular triangles whose vertices have known
elevations and whose edges join vertices which are Thiessen neighbours, and the surface is
represented in each one by a plane. Visibility is approximated as a property of each triangle:
a triangle is defined as visible from a point if all of its edges are fully visible. We present
algorithms for determination of visibility, and thus reduce the problems to variants of the
location set covering and maximal set covering problems. We examine the performance of a
variety of heuristics.

1. Introduction

The problems considered in this paper have two simple motivations, and we
suspect that others could be found without much difficulty. Consider first the
problem of locating fire towers in a rugged landscape so that it is possible to see
every part of the landscape from at least one tower. Alternatively, given a fixed
number of fire towers to be located, one might wish to maximize the area seen on
the assumption that no locations could be found which would provide complete
surveillance. Similar problems might arise in the context of security surveillance:
for example, it might be necessary to locate a minimum number of observation
posts from which watch could be kept over a sensitive military area. In another
version, not considered in this paper, one might wish to locate the minimum
number of points along a given linear feature, for example a fence or wall, such
that the entire linear feature could be seen from at least one, or perhaps at least
two points. In all of these examples we assume an arbitrarily rugged surface, and
the ability to locate anywhere on the surface. We also assume initially that the
viewpoints are located on the surface itself; towers are either of height zero, or
not sufficiently high to affect the area seen within the spatial resolution of the
analysis. Later in the paper we discuss problems in which tower height affects
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area seen, and in which the objective is to achieve maximum visibility coverage
with minimum expenditure on tower construction.

The first section of the paper considers three alternatlve approaches to the
representation or modelling of the given topography. In reducing an arbitrary
surface to digital form it is necessary to consider both the accuracy of the
representation, since any model must in principle approximate the real surface,
and also the model’s suitability for use in solving the particular problem of
visibility coverage. The second section discusses the algorithm used to generate
each point’s viewshed or visible area. It is necessary that the algorithm be as
efficient as possible in view of the potential volumes of data to be processed in
problems of realistic size. Given the ability to compute each point’s visible area,
the third section discusses the structure of the optimization problem, and com-
pares it to two well-known set covering problems. The fourth section of the paper
reviews possible heuristics and examines their performance on sample problems,
and the fifth section discusses possible extensions.

1. Representations of surfaces

There are three commonly used approaches to the digital representation of an
arbitrary surface (see for example [2]). We refer to this process of representation
as the construction of a digital elevation model or DEM. Since the commonest
representation of topography on a paper map is by contours, or lines connecting
points of equal elevation, we might simply digitize the contour lines as ordered
sets of points, and assume adjacent pairs of points within each line to be
connected by straight lines. The major disadvantage of this approach as a digital
representation is that it provides a very uneven density of information: uncer-
tainty about a randomly chosen point’s elevation is zero on each contour line, and
rises directly with the point’s distance from the nearest line. To obtain an
accurate representation of an entire surface it is therefore necessary to use a large
number of contours at very small intervals of elevation.

The second alternative, the representation of the surface by a regular square
grid of sample elevations, gives a uniform intensity of sampling, and is therefore
frequently used in practice. For example, elevations to the nearest metre are
available for the entire U.S. at a sampling interval of 30 m. For our purposes it
would be possible to calculate the area seen from each of the grid of sample
points by interpolation. However the ruggedness of any real topographic surface
tends to vary from one part of the surface to another: some areas tend to be
smooth, while in other areas elevation varies rapidly over short distances. For this
reason a uniform sampling density is inefficient compared to a design which
responds to the variability in the surface by sampling more intensively in the
more rugged areas. Moreover it is not clear how the surface should be inter-
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polated between grid points: for example there is no uniquely appropriate way of
fitting a plane in each grid cell.

This leads logically to the third alternative, known as the TIN or triangulated
irregular network [9]. In this model the space is divided into a set of irregular
triangles with shared edges, and the surface is modelled by the triangles as if they
were mosaic tiles. Each edge is shared by exactly two triangles, with the exception
of those whose edges form the outer boundary of the network. Each vertex is
shared by at least three triangles. In the simplest version, which we have adopted
here, the surface is assumed to be planar within each triangle: this would not be
possible with tiles of more than three vertices. In more elaborate versions of the
TIN model the surface within each triangular tile is defined by a polynomial
function of the x and y coordinates, with the constraint that the surface be zero-,
first- and second-order continuous across each edge.

The construction of a TIN model begins with the selection of an irregularly
located sample of point elevations. For maximum economy the points will be
more densely sampled in areas of rugged terrain. By using pits, peaks and other
critical surface points on ridges and in valleys it is possible to achieve an
adequate representation of a surface with far fewer sample points than with either
of the previously discussed alternatives. These points then form the vertices of the
TIN. One unambiguous and frequently used procedure for defining the edges of
the TIN is to connect all pairs of points which are Thiessen neighbours. The
Thiessen region (also known as the Voronoi or Dirichlet region) of each point is
defined as that part of the plane which is closer to the point than to any other
point. Two points are then Thiessen neighbours if their respective Thiessen
regions share an edge. The result is the Delaunay triangulation of the sample
points: each triangle has the property that the circle defined by its vertices
contains no other point. The outer boundary of the Delaunay network is the
convex hull of the point set. The relationships between Delaunay triangles, the
Thiessen regions which are their topological duals, and the points which generate
them are illustrated in fig. 1.

A number of algorithms for Delaunay triangulation have been published
[1,4,6,8,11], any of which would be appropriate in this context. Our approach is
not the most efficient, but is adequate for our purposes and relatively easy to
program. It begins by searching the set for the closest pair of points, i and j,
which. must be Thiessen neighbours, and connecting them to give the first
Delaunay edge. Two entries are then made into a stack, one for the ordered pair
ij and the other for ji. In the main cycle of the algorithm an ordered pair is taken
from the stack, and a search is made for the third vertex k which will complete
the triangle whose vertices are ijk when taken in clockwise order. The pair i is
then deleted from the stack, and jk and ki are added. By presorting the points in
x it is possible to process n points in the worst case in O(n?) time.

In summary, then, the TIN representation used in this paper is constructed by
first determining elevations at an irregular sample of points, including peaks, pits
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Fig. 1. The Thiessen regions (solid lines) and Delaunay triangles (dashed) of a point set.

and with heavy sampling on ridges and in valleys; second, by connecting these
points as vertices into a network of triangles, using the Delaunay triangulation;
and third, by assuming the surface within each triangle to be modelled by the
plane defined by its vertices.

The TIN model is an efficient digital representation of an arbitrary surface,
but it is also particularly suited to the problem of visibility coverage. To make the
coverage problem tractable, it will be necessary to limit the search to a finite set
of locations, which should include all of the peaks of the surface. Thus the
process of selection of TIN vertices is efficient both as a means of representing
the surface and as a method of selecting a discrete set of locations to be searched
for visibility coverage.

Two vertices of the TIN are intervisible if a straight line between them lies
entirely on or above the surface. We define the visible area of a vertex as a subset
of the Delaunay triangles rather than as a subset of the vertices. There is no
requirement that the subset be connected. However it will necessarily contain the
viewpoint since we define the triangles adjacent to the viewpoint as visible.

For a triangle to be fully visible, it must be true that any line drawn from a
point within the triangle to the viewpoint vertex must lie entirely on or above the
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O viewpoint

Fig. 2. Visible set of triangles from a single vertex on a 100-vertex simulated TIN.

surface. If we regard the surface as a function z(x, y), then because of the
obvious requirement that the function be everywhere continuous and single-val-
ued, it follows that a triangle is fully visible if and only if its three edges are fully
visible. An example of the set of triangles fully visible from a single vertex on a
sample TIN of 100 vertices is shown in fig. 2.

2. The visibility algorithm

The visibility problem is clearly closely related to the detection of hidden lines,
which is a well-known problem in computer graphics. The specific problem of
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determining the set of triangles of a TIN which are visible from a TIN vertex has
been discussed by de Floriani et al. [5], who also noted the possibility of using
their approach to solve the visibility coverage problems being discussed in this
paper.

The algorithm begins with the selection of a TIN vertex as viewpoint. We
assume for the present that the elevation of the viewpoint is the same as the
elevation of the vertex. Consider the set of vertices each connected by a single
edge to the viewpoint. These vertices form a polygon, all of whose edges are
visible from the viewpoint, and all of the triangles contained within the polygon
and sharing the viewpoint vertex are also visible. We define the curtain as an
imaginary vertical fence constructed around the boundary of this polygon, with
its foot following the horizontal projection of the polygon. The top or horizon of
the curtain passes through each of the vertices of the polygon, and follows the
connecting edges between those vertices. It follows that a point on the far side of
the curtain from the viewpoint is invisible if a line drawn from it to the viewpoint
passes through the curtain below the horizon.

The algorithm proceeds by keeping the curtain vertical, but moving its foot
outwards from the viewpoint, one triangle at a time, with the constraint that a
line drawn from any point on the curtain to the viewpoint must not intersect
another point on the curtain. Consider. the horizontal projection of an edge ij
forming part of the foot of the current curtain. It will be shared by two triangles,
one inside the curtain and one outside. Denote the latter by ijk. Then the foot of
the curtain may be moved from the horizontal projection of edge ij to the
projections of ik and kj if and only if the horizontal projection of a line drawn
from k to the viewpoint intersects the horizontal projection of the edge ij.

As the curtain is moved outwards, its upper edge is adjusted to form the new
horizon visible from the viewpoint. This is computed first by reprojecting the
current horizon to allow for the new position of the foot, and second by a union
operation with the horizon formed by the new edges ik and kj. The horizon is
maintained as an ordered set of (x, y, z) triples which are assumed to be
connected by straight lines, and in general the length of the list grows as the
curtain is moved outward. The algorithm terminates when the curtain reaches the
outer boundary or convex hull of the TIN.

A triangle can be identified as visible or invisible immediately the foot of the
curtain has been moved over it. It is visible if and only if vertices i and j occured
in sequence in the old horizon with no intervening triples, and if vertices i, k¥ and
Jj similarly occur in sequence as triples in the new horizon, with no intervening
triples. This ensures that all three edges are fully visible from the viewpoint.

The algorithm is executed fully for every vertex, as there appear to be no
simple theorems which would allow information about one vertex’s visible area to
be derived from another. With n vertices, the number of triangles is O(n), and
this determines the number of steps in the algorithm. However the number of
triples on the horizon is less predictable. Let us suppose, as a provisional guess,
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that in the worst case the number of points which must be reprojected in
calculating the new horizon in each step is O(n), so the computational complexity
of the identification of one visible area is O(n?). To find visible areas for all
vertices thus requires O(n?) time in the worst case.

3. The coverage problem

The results of calculating the set of triangles visible from each of the TIN
vertices can be expressed as a rectangular matrix with each row representing a
viewpoint vertex and each column a triangle. Each element x,; of the matrix is set
to 1 if the triangle i is visible from the vertex j and 0 otherwise. Each triangle
can be weighted by its area if the objective is concerned with the area visible,
rather than with the number of triangles visible.

It is possible that rows can be eliminated as potential viewpoints because they
are dominated by other vertices. The necessary condition for the dominance of
vertex i by vertex k is simply:

Xy ;2= x;; forall j (1)

Unfortunately it appears that dominance is unlikely in practice. It requires
situations in which an observer is able to move on a landscape without bringing
new areas into view: in practice moves almost always result in a changing field of
view, with the addition of some areas and the deletion of others. The TIN
representation ensures that the field of view of each vertex is almost certainly
unique, and that dominance almost never exists. The search for coverage must
therefore consider all vertices.

The formalization of the visibility coverage problems follows the standard form
of the location set-covering [12] and maximum covering location [3] problems
respectively. Let the presence of a facility at vertex i be denoted by y;, which is 1
if a facility is present and 0 otherwise. To minimize the number of facilities
required to see the entire surface:

Minimize Yy, (2)
subject to y,={0,1} forall i (3)
injyi>1 for all j. (4)

To maximize the area covered by a given number of facilities p, let the area of
triangle j be denoted by 4.

Maximize ) A, min(l, Zx,.jy,.) (5)
j i
subject to  y,={0,1} forall i (6)

Lyi=p (7
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4. Heuristics

A number of data sets of different sizes were simulated by generating (x, y, z)
point elevation triples, all three coordinates being independent and uniformly
distributed in the range (0, 1). The visibility algorithm was used to calculate
coverage matrices as input to a variety of heuristics.

The dominance condition was found to be very rare, which is understandable
given the independent elevations generated for neighbouring TIN vertices. A
simulation of 30 points produced one case of dominance, and a 100 point surface
was found to have none. The dominance test was subsequently deleted from the
analysis.

Three broad classes of heuristics were tested: a greedy add (GA), in which
viewpoints were added one at a time, on each step selecting that vertex which
maximized some conveniently computed parameter; a stingy drop (SD), with all
vertices selected initially and then dropped one at a time based on the minimum
value of a parameter; and a greedy add with swaps (GAS), where an attempt was
made to improve the objective function by exchanging each vertex in the solution
with one not in the solution after the addition of each new vertex.

To solve the location set covering problem each heuristic was continued until
the solution just covered the set. The maximal covering problem was approached
by running the heuristic until the prescribed number of facilities had been
located. Additions and deletions were driven both by change in total area visible,
and by change in total number of triangles visible.

The combinations of three basic heuristics and two driving parameters gener-
ates a total of 6 methods. These were tested on 10 sample problems of 30 vertices,
and the results are shown in table 1. The most successful heuristic was found to
be GA; swapping never produced improvement in performance. Of the driving
parameters the total number of triangles visible was never outperformed, whereas
total area visible was outperformed in one case. We should emphasize, however,
that the use of simulated TINs with independently generated elevations may be
unrepresentative of real conditions, where substantial amounts of spatial autocor-
relation are to be expected between vertex elevations.

Although these conclusions appear to be robust for the random TINs used in
this analysis, it would be difficult to obtain general results for the performance of

Table 1
Number of times each heuristic was outperformed by another in solving 10 sample problems of 30
vertices

Heuristic Driven by area visible Driven by triangles visible
Greedy add 1 0
Greedy add with swaps 1 0

Stingy drop 9 8
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heuristics. This would require first that analyses be made over a full range of
types of topography. Although suitable stochastic models of spatially autocorre-
lated terrain exist [7], they are clearly appropriate only for a limited range of
terrain types. But a more serious problem is the difficulty of removing the effects
of the selection of TIN vertices on the results. A heuristic which gives good
performance when TIN vertices are restricted to pits and peaks of the surface
may be poor when vertices are allocated according to a random Poisson process,
for example.

5. Extensions

The nature of the visibility coverage problem raises the possibility of driving
heuristics with distinctive parameters. One might argue that vertex elevation plays
a large part in intuitive solutions to these problems, and should therefore be
successful as a seléction criterion. The column total of the x matrix, or the
number of vertices from which a given triangle can be seen, is an index of its
general visibility, and might be a useful weight: it would be logical to select first
those viewpoints which cover as many as possible of the less visible triangles.
More specifically, let W, be the visibility of a triangle, defined as follows:

Vijzxij- (8)

Then the heuristic-driving parameter V, is obtained as:

i
I/i=Z(B_ VVj)xij e
J :
where B is a number at least as large as the largest W, B> W, for all j.

Thus far the discussion has been limited to the case of viewpoints located on
the topographic surface. Visibility coverage can clearly be increased by raising the
viewpoint; since the surface z(x, y) is assumed to be single valued, there must
exist some minimum height at each vertex from which it is possible to see the
entire surface.

Let w;; denote the minimum height above the vertex i from which an observer
can see triangle j; the triangle will be visible from all elevations above w,; and
invisible at all lower elevations. Assume that construction cost is a simple,
monotonically increasing function of tower height, C(H,;) where H, denotes the
height of the tower at vertex i. A vertex which is used as a viewpoint but has no
tower will have H; = 0, and will presumably incur positive cost. A vertex which is
not used as a viewpoint will be identified by a negative H,. We can now introduce
problems of visibility coverage in which the objective is to achieve maximum
coverage at minimum cost.

Let

x,;=1 if H;>w,,, 0 otherwise (10)
y;,=1 if H,>0, 0 otherwise (11)
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To see the entire surface at minimum tower cost:

Minimize Y C(H,), C(H)>0 for H>0, C(H)=0 for H<0 (12)

subject to ix,.jyi >1 for all j. (13)

To maximize the area covered within a construction budget T

Maximize ZAJ. min(l, Zx,.jy,.) (14)
J i

subjectto Y C(H,) < T. - (15)

Revelle [10] has suggested a discrete formulation of these problems which has
certain advantages. Let s, = 1 denote the presence of a tower of height class k at
vertex i, otherwise s, =0, and g¢,, the cost of the tower. Let U; denote the set of
ordered pairs {i, k} which can see triangle j, and let ,=1 if triangle j can be
seen by one or more towers, otherwise r,=0. Then we have two sets of
constraints:

rn< ) s, forall j (16)
(e,
Y5, <1 foralli. (17)
k

The objectives can now be expressed as:

Maximize area seen: Z; = ) A r, (18)
: _ F

Minimize cost: Z,= Y Y. q.xSic- (19)

ik

If the problem is solved as an LP with weighted objectives:
Maximize Z = aZ, - (1 — a) Z, (20)

then solutions are likely to be integer [10].

The determination of the set U, or w,; in the earlier continuous formulation,
requires a modification of the visibility algorithm, as it is no longer appropriate to
move a curtain outwards from each vertex. A similar curtain is constructed
around each triangle and moved outwards. Whenever a vertex is encountered it is
then possible to calculate the increase in elevation necessary to make the vertex
visible over the top of the curtain, in other words the tower height.

Many other problems of spatial search and optimization can be formulated
within the general framework of visibility on topographic surfaces. One might
wish to find a minimum set of viewpoints to cover some prescribed subset of the
surface, or to find the location from which a prescribed area can be seen using a
tower of minimum height. Other objectives derive from a desire for concealment,




M.F. Goodchild, J. Lee / Coverage and visibility on topographic surfaces 185

for example to find the p most concealed vertices, by maximizing the area from
which none can be seen. Given a suitable operationalization of the visibility of a
path, one might search for the most concealed path between two specified
vertices, or for vertices which best cover a given path.

6. Concluding remarks

Although it is possible to find precise definitions of visibility in the context of
a specific model of a surface such as the TIN used in this study, no such precise
definition exists for real terrain. We have already seen that the digital elevation
model can only approximate the real surface: although elevations at vertices may
be exact, the surface between them is assumed to vary linearly. To obtain an
accurate representation it is necessary to choose a large number of appropriately
located sample points. However, an accurate DEM is no guarantee that the set of
triangles visible from a point will be an accurate representation of the seen area.
Apart from artifacts such as trees which may inhibit visibility independently of
the topography itself, a small error in elevation can produce very large errors in
visibility. For example, a difference of a few centimetres in a horizon close to the
viewpoint can produce a difference of many square kilometres in the visible area.

The use of the TIN digital elevation model, the restriction of the search space
to the vertices of the TIN, and the definition of each vertex’s visible area as a set
of fully visible triangles produces a tractable version of the visibility problem
which is suitable for application to site selection. It can readily be generalized to
the case where viewpoints are raised above the surface, and standard heuristics
for set covering appear to work well. However the solution is clearly sensitive to
the accuracy of the underlying TIN in representing the true topography.

This paper has introduced an extension of the concept of set covering to cases
where coverage is determined by field of view on a topographic surface. As with
all location problems, the search for optimality must be conducted on a model of
reality rather than on reality itself; in this case the TIN serves as a model of the
real topographic surface. However the effects of modelling are unusually explicit
in this case, and the ability to investigate these effects is one of the more
interesting aspects of this class of problems.
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