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Introduction

The problem of error in GIS products has attracted consider-
able attention in recent years (see for example Chrisman, 1987;
Goodchild and Dubuc, 1987; Burrough, 1986; Walsh, Lightfoot and
Butler, 1987). Spatial data handling systems process data with
high precision, so it is perhaps surprising to find that the
results of query or analysis frequently conflict with ground
truth. Unfortunately the input to such systems is almost always
an abstraction of reality, and processing frequently increases
the degree of abstraction. For example the data input from a
forest inventory often consist of classified stands of timber,
defined by polygonal boundaries and homogeneous attributes.
Since the forest stand itself is rarely if ever homogeneous, even
on the simplest attributes, such input constitutes an abstraction
of reality; furthermore the degree of abstraction is usually
unknown. To compute an estimate of marketable timber, the
attributes and area of the stand will be input to a set of yield
tables, but the results will be subject to additional uncertain-
ties because yields are only crudely predictable.

Research on error in GIS has two objectives, both of
substantial practical significance: first, to minimize error in
products, and second, to develop models of error which can be
used to compute measures of uncertainty. At present we know of
no system which routinely estimates and reports measures of the
error inherent in any of its products.

Some GIS operations contribute directly to error, and such
cases are relatively easy to characterize and model. Errors
introduced during digitizing and processing are termed processing
errors. Consider a homogeneous patch of land, represented as a
polygon in a vector database. Conversion to raster representa-
tion introduces a distortion, since the patch must now be
represented by a set of pixels of fixed size. If the area of the
patch is estimated from the raster representation, it is rela-
tively straightforward to model the effects of this distortion on
the estimate of area, in the form of a measure of standard error
(Goodchild, 1980). But while such measures can be used as useful
guides in selecting pixel sizes, they are based on the assumption
that the homogeneous patch with precise boundary is a correct



representation of reality. They fail, therefore, to deal with
lack of homogeneity, or uncertainty in the 1location of the
boundary, despite the obvious dominance of these sources of error
in many resource management applications, as demonstrated in
several experiments (McAlpine and Cook, 1971; MacDougall, 1975).
Differences between reality and the representation input to the
system are termed source errors.

Modeling source errors due to fuzzy boundaries or hetero-
geneous patches is much more difficult. In many GIS applications
the database was derived from a cartographic representation with
precise boundaries and homogeneous patches; information on
fuzziness and heterogeneity was lost long before the data entered
the system. It is clear that our ability to model error in a
comprehensive fashion will depend on new approaches to data
collection and representation which avoid some of the abstraction
present in traditional methods.

Consider once more the example of a forest database. A
digital forest inventory is created by first obtaining aerial
photography or remotely sensed imagery. Manual interpretation
then converts this to a cartographic representation of homo-
geneous stands; attributes are added by interpretation and direct
ground observation. The cartographic representation is then
digitized as a vector database. An alternative approach would
input the raw imagery and ground observation directly to the
digital system, as pixels and point or line features respective-
ly. The system would now contain the necessary information both
to compute measures of heterogeneity and boundary fuzziness, and
hence uncertainty in products, and also to derive the carto-
graphic view of homogeneous stands as and when required.

The interfacing of remote sensing systems and GIS presents
similar issues. Once an image has been interpreted and
classified in a remote sensing system it is common to generate
information products by transferring the data to a GIS, which
allows such operations as topological overlay, calculation of
area of homogeneous patches, etc. Processing errors due to the
use of pixels of fixed size to represent homogeneous spatial
objects can be estimated relatively easily. However variation of
class within pixels, heterogeneity of classes and problems of
class definition, and uncertainties due to the physics of the
sensor often make much larger contributions to error. Informa-
tion on source errors is not available to the GIS from classified
pixels.

The objective of this paper is to develop methods of
characterizing source errors in a GIS. Several techniques of
classifying remotely sensed images are capable of yielding
probabilities of class membership for each pixel; we explore the
notion that these can be passed to a GIS, rather than a single
class for each pixel, and used to derive appropriate measures of
product error. In effect, we propose to approach the problem of
source error estimation by reducing the level of abstraction in
GIS databases.




The next section of the paper discusses the nature of class
membership probabilities, and associated stochastic processes.
The following section explores the relationship between pixel
probabilities and certain well-known concepts in cartographic
error modeling. The final section discusses the implications of
this approach for GIS error estimation.

Class Membership Probabilities

Consider the classification problem as that of assigning
each pixel in an image to one of m classes. Several methods of
classification, such as discriminant analysis, are capable of
yielding membership probability wvectors for each pixel,

{pjl,pjz,...,p.m} where p;; denotes the probability that pixel j
is” a member of class i given its spectral response. Clearly

Z p., =1 for all j.
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The probability vectors can be viewed as a multivariate
surface, with the wvalue in any pixel equal to the mean value of
the surface over the domain of the pixel. Depending on the pixel
size, we expect to find positive spatial autocorrelation in each
surface, as the value of p;; in any pixel is expected to be more
like neighboring values than distant values:

E(pji—pki)2 is an increasing function of the spatial separation
of j and k.

Probability vectors can provide very simple estimates of the
uncertainty inherent in responses to certain types of query. A
gquery concerning the attributes of a point could be satisfied by
returning the probability vector for the pixel containing the
point. A more reliable response might be based on interpolation
of continuous surfaces, subject to appropriate constraints
(Tobler, 1979); the volume under each surface within each pixel
would have to equal the observed probability for that class, and
the surfaces at each point would have to sum to one.

The expected value of area of class i within some defined

region S is given by a I p;; where a is the area of a pixel.
jes

However the variation which is expected about this mean, in other
words the uncertainty of an area estimate, depends on our
conceptualization of the associated stochastic process. We use
the term realization to denote a process by which pixel probabil-
ity vectors are converted into a specific class at every point.

One simple realization is an independent Bernouilli trial in
each pixel under the given probabilities. The result would be
unrealistic because the variation between neighboring pixels
would be inconsistent with the assumed homogeneity within cells,
and therefore conflict with our expectations of the way variance
should increase with distance. Figure 1 shows this realization
applied to a 100 by 100 array with m=2; the probability that a
cell is class black varies linearly from 1 on the left to 1/2 on




the right. The wvariance of an area estimate for class i in
region S under this realization is given by az.gspji(l—pji).
J
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1. Realization by independent trials in each pixel, probabilities
declining linearly from 1.0 on the left to 0.5 on the right.

Another simple approach would be to assume the process to be
spatially divisible, with independent trials within each sub-

pixel. This would imply an assumption of homogeneity within
subpixels and independence between, and would require that the
size of subpixel be chosen appropriately. If each pixel is

divided into n subpixels the variance in an area estimate is

given by a?/n L p;; (1-p;;), which declines with n to reach O
jes

when the process is infinitely divisible.

Finally, consider the "realization" implied by maximum
likelihood classification, in which each pixel is assigned the
class of 1its greatest probability. The expected area is now
given by I a §;; where §;; is 1 if

jes
Pi;i ”Pjx for all i#k, else 0. This estimate is clearly biassed
with respect to the estimates from the previous realizations. 1In
the case of Figure 1 it gives an estimate of 10000 (the entire
array) rather than 7500, while the actual count of black pixels
in Figure 1 is 7518.

Intuitive expectations about the relationship between
variance and distance (the variogram function) are determined
largely by context. A forester defining stand boundaries may
apply subjective rules about the minimum size of a stand and the
minimum curvature of stand boundaries. Suppose that the size of
the pixel is defined by the context such that homogeneity within
pixels is acceptable. It is still unacceptable to generate a




realization with independent trials because of the consequent
excessive variance between neighbors.

A simple way to reduce interpixel wvariance is to apply a
smoothing filter to the result of independent trials. Figure 2
presents three different realizations of the same set of prob-
abilities; in each case these vary from 0 on the left to 1 on the
right according to a logistic function. Maximum 1likelihood
classification would produce a vertical boundary. In each case
the initial map has been convolved with a 3 by 3 pixel filter by
replacing the class of the central cell by the modal class until
no further change occurs. Within any one realization the outcome
for a particular pixel is no longer independent of neighboring
outcomes. Across trials the posterior probability that a
particular pixel has class i is determined by the prior probabil-
ity and the nature of the filter. Clearly it is desirable that
filters be chosen such that prior and posterior probabilities are
equal for all pixels and classes, although for this particular
filter the posterior probability is always closer to 0.5.
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2. Three realizations of the same set of probabilities after applying a
low-pass filter to independent trials.

The realization shown in Figure 2 provides a means of
generating different representations of objects under the same
set of input probabilities. Thus we now have a model for the
distortions inherent in an object-oriented spatial database.
Furthermore the model is based entirely on information readily
available to a GIS provided a suitable method of image classi-
fication has been used, and provided some real basis can be given
to the filter. In practice we suggest that the criteria for
filter selection should be based on achieving equality in prior
and posterior probabilities, and a desirable functional relation-
ship between interpixel variance and distance. In the latter

case there are clearly analogies to the choice of wvariogram
function in Kriging. '




Cartographic Distortion

In this section we consider the relationship between this
model of pixel probabilities and more widely known concepts in
cartographic distortion. The edge of a cartographic object is
represented in a vector database as a line, usually by connecting
points with straight line segments, despite the presence of both
source and processing errors. Distortion in 1lines has been
described through the concept of an epsilon band (Perkal, 1956;
Chrisman, 1982; Blakemore, 1984); in its simplest version the
true position of the line is believed to lie within a band of
width epsilon about the observed line with probability 1.

The +three realizations in Figure 2 can be described by a
probabilistic version of the epsilon band. The true line will be
taken to be the locus of p=0.5, which is a vertical line midway
along the x axis. An estimate of an epsilon-like parameter can
be obtained from the mean displacement of the observed 1line
parallel to the x axis in each realization. Over 100 realiza-
tions, the mean displacement was 3.4 pixels with a standard
deviation among realizations of 0.5. Mean displacement was
calculated by taking all white cells to the right of the true
line, and all black cells to the 1left, and averaging the
horizontal distance to the true 1line. The islands shown in
Figure 2, which occur frequently in this process, were therefore
included in the calculation of the mean displacement.

Blakemore (1984) has described a modification of the point
in polygon problem to allow for uncertainty in the position of
the polygon boundary. The process described above provides a
direct link between pixel probabilities and the containment of a
point within a homogeneous patch inferred from a classification
of pixels. However the results will certainly be different.
Based on pixel probabilities a point will never be identified as
certainly contained within a homogeneous patch; to do so requires
a realization of prior probabilities based on some assumed level
of spatial autocorrelation.

Part of the error in estimating the area of a patch derives
from uncertainty about +the position of the patch boundary.
Consider the black areas of Figure 2 as patches whose area must
be estimated. Under a maximum 1likelihood "realization" the
estimate has zero standard error; under an independent series of
Bernouilli trials the standard error can be obtained from the
prior probabilities as noted above. In the realization process
of Figure 2 the standard error is substantially reduced, since at
several pixels distance from the boundary there is no longer
uncertainty as to a pixel's class. Over 100 realizations the
standard error was 164 about a true area of 5000 pixels.

Spurious or sliver polygons result when two independent
distortions of the same line or polygon boundary are overlaid,
and in large databases the number of spurious polygons so created
can easily overwhelm the system (Goodchild, 1978). It is common
in vector systems to include code to remove slivers after
overlay, using rules based on area and perhaps shape. However




such algorithms have no sound basis in statistical models of
error.

Figure 3 shows two independent realizations of a multinomial
array, derived from a section of a Landsat scene. The scene was
classified using cluster and discriminant analyses, to yield
vectors of membership in each of four classes. These were then
realized with independent trials followed by passes of a simple 3
by 3 filter. Note that +the peripheral pixels reflect the
difficulty of using the modal filter on the edge of the array.

Several authors (see for example Greenland and Socher, 1985)
have compared two such versions of the same image using a
bivariate table in which pixels are crosstabulated according to

their classes on the two versions. The degree of agreement can
be summarized by a chisquared or kappa statistic as a measure of
distortion. The table below shows the mean counts for 100

comparisons of pairs of independent realizations of the same set
of probabilities used to generate Figure 3:

Image A
Image B 1 2 3 4 total
1 5427 176 49 120 5772
2 179 1635 3 36 1853
3 45 3 441 6 495
4 120 34 6 1720 1880
total 5771 1848 499 1882 10000

As expected most cells have the same class in both images of each
pair, and thus cluster along the diagonal of the table.

Both chisquared and kappa compare the cells of the table to
the counts which would be expected if pixel classes were assigned
randomly; for example any pixel in image A would have the same
chance of being one of the 5772 class 1 pixels. However this is
an entirely inappropriate null hypothesis which bears no rela-
tionship to any possible process of realization of pixel prob-
abilities.

In the context of our model, dJdisagreement between the two
images results from the independent realization of a constant set
of prior probabilities. Maximum 1likelihood and infinitely
divisible realizations will produce no disagreement. High
disagreement will occur if independent trials are used in each
pixel, but this will be reduced when positive spatial auto-
correlation is induced by passes of a low-pass filter. The
values of chisquared and kappa are therefore artifacts of the
prior probabilities and processes of realization, and not
directly interpretable.
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3. Two realizations derived from probabilities obtained by applying a
discriminant classifier to a portion of a Landsat scene.




Implications

We have argued that errors in spatial databases, which lead
to artifactual features such as sliver polygons and to uncertain-
ties in GIS products, can be divided into processing errors
introduced during digitizing and manipulation, and source errors
in the form of discrepancies between input data and ground truth.
Processing errors are likely to be more easily modeled, but
unfortunately are 1likely less significant in many applications.
The difficulty of modeling source errors is attributable largely
to the fact that relevant information is often lost in the
process of creating an input document, in the form of a carto-
graphic view of reality.

We have suggested in this paper that class membership
probabilities, which are obtained as a byproduct of several
methods of classification for remotely sensed imagery, contain
useful information on source error. If these are passed into a
GIS, instead of a single class for each pixel, then they can be
used to develop appropriate representations of uncertainty for
GIS products. However, to do so requires a conceptualization of
the manner in which pixel probabilities are realized in a
stochastic process. Conducting trials in each pixel assumes that
spatial variation is =zero within pixels, and assigns independent
classes to neighbors. Realization has been modeled in this paper
by independent trials in each pixel followed by convolution with
a low-pass filter.

Prior probabilities provide a satisfactory way of establish-~
ing confidence 1limits on GIS products in a raster database. 1In
an object-oriented database the probabilities must be realized,
requiring knowledge both of the prior probabilities and of a
suitable filter. With this information it is possible to
estimate the errors associated with areas of patches. However it
is dimportant to note that such errors are not homogeneous
attributes of polygons. If polygon A on one image is overlaid
with polygon B on another, the error in the area of intersection
cannot be computed through a simple operation on the attributes
of A and B. Our model does not support the notion of tracking
error through the operations of an object-oriented database.

Unfortunately our model offers little support for estimation
of source errors in conventional spatial databases containing
classified pixels or homogeneous, precisely bounded objects. It
seems that effective treatment of source errors will require the
kinds of restructuring of data collection, interpretation and
input outlined in the introduction.
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