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Abstract, A generalization of the travelling salesman problem is introduced. Each node
has an associated reward, and a penalty is incurred by travelling between nodes. In the
multiobjective vending problem, the subset of nodes and associated tour which will minimize
penalty and maximize reward is sought. The problem is placed within the context of multi-
objective programming. A heuristic is proposed and evaluated, and it is found to give
satisfactory performance when applied to a problem with twenty-five nodes. Further
generalizations are suggested.

Introduction

The travelling salesman problem (TSP) is defined conceptually as follows: given a
set of N nodes, determine the shortest complete circuit that connects all nodes, so
that every node is visited once and once only.

The applications of the TSP to spatial analysis are broad and varied. This has
led to the definition of numerous extensions and modifications to the basic TSP
definition. These include, amongst others, the multiple travelling salesman problem
(introduced by Dantzig et al, 1959), and a combination of TSP and depot location
problems (Clarke and Wright, 1964; Orloff, 1974). A complete review of all
TSP generalizations and their solutions is beyond this paper. A logical summary
of generalizations of the TSP is discussed by Keller (1986).

An assumption underlying most of the above research is that the set of nodes to
be visited is given and fixed. The problems are therefore generalized and are
reduced to a single objective problem, that of finding one or a number of optimal
travelling salesman routes that connect all specified nodes. This is not always
realistic. Consider the hypothetical example demonstrated in figure 1, which shows
a fourteen-node problem and the optimum (shortest) travelling salesman path,
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Figure 1. Hypothetical example of a travelling salesman route.
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Assume that a penalty, which is proportional to the length of the route, must be
accepted for travelling between the nodes, and that each node has associated with
it some reward-potential that can be collected upon arrival at that node. Figure 1
shows node six to be located at quite some distance from all the other nodes. The
route-penalty, that must be accepted to travel to and from node six, is therefore
relatively large. The question may arise as to whether it is worthwhile travelling
the extra distance to visit node six, or whether this node should be excluded
from the route-sequence. The answer to this question will depend on the size of
the reward offered at node six, and on the trade-off relationship established
between reward and penalty.

Periodic marketing (Bromley et al, 1975; Ghosh, 1982; Hay, 1971; Webber and
Symanski, 1973) provides a useful practical application. The problem faced by the
vendors in the market is to find a tour which can be repeated on a regular cycle,
and which combines the minimum of travel-penalty with the maximum of marketing-
reward. Another conceptual application is the scheduling of a mobile vending
service, such as a lunch truck, which must balance the time lost in travelling from
site to site with the magnitude of the potential gains at each one (Keller, 1985).
Similar problems arise in other areas of marketing, as well as in a number of public-
sector applications where a mobile service cannot afford to visit every possible
demand-site. Another application concerns the identification of the optimal route
in score orienteering competitions, as identified by Tsiligirides (1984) and Golden
et al (1985).

The problem raised contains two conceptual objectives, that of maximizing the
reward to be collected by visiting as many nodes as possible, and that of keeping
the total link-penalty to a minimum. If the two objectives can be defined in
commensurable terms, say dollars, or if a trade-off relationship can be specified,
then the problem can be solved as a single-objective problem. However, in many
cases the two objectives will not be commensurable, and a study of the trade-off
relationship between them may be of interest. The purpose of this paper is to
discuss such a multiobjective definition, hereafter referred to as the MVP
(multiobjective vending problem).

The MVP is defined conceptually as follows. A set of N nodes or demand
points, each with a known reward-potential, is connected by links, each link with a
known travel-penalty. The objectives are to find a circuit through a subset of the
demand points in order simultaneously to maximize reward and minimize the
accrued travel-penalty. No relationship is defined a priori between reward and
penalty, and the two objectives must therefore be treated as noncommensurable.

The solution set
The trade-off curve between the two objectives can be represented graphically, as
shown in figure 2. The axes represent the two objectives. The set of feasible
solutions to the problem is confined to the shaded region in the lower right of the
figure. A discrete subset of this feasible region can be identified as noninferior in
the following sense:
“A feasible solution to a multiobjective programming problem is noninferior if
there exists no other feasible solution that will yield an improvement in one
objective without causing a degradation in another objective” (Cohon, 1978,
page 70).
The points representing the noninferior-solution set show how much of one
objective must be traded off or sacrificed in order to obtain a specified gain in
another objective.
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Figure 2. An example of an MVP noninferior-solution set.

Mathematical definition
The MVP problem can be expressed mathematically as follows.

Maximize Z = (Z,, Z,) , (1)

Z, = Z R;, Z, = Z Pi,i+1 > <2)
i=1 i=1 :

R, >0, Py >0, (3)

where Z, is the total reward, Z, is the total penalty, R; is the reward to be
collected at node S, and P, ,,, is the penalty that must be accepted to travel from
node S; to node S;,,. Also:

S = Sper = Sus (4)
S.ef{l,.,N}, Vi, (5)
S #S,  Vij, i#]. (6)

Equation (1) states that the overall objective, Z, consists of a combination of
two single-objective functions, Z;, and Z,. The individual objective functions are
merely listed; they are not added, multiplied, or combined in any other way as the
relative importance of the objectives is not specified. S;, the ith member of the route-
sequence vector .S, stands for the ith node visited on the tour, and m represents
the number of nodes actually visited. It will become obvious from the following
discussion that the magnitude of m will be dependent on the solution obtained.
Equation (6) ensures that no node is visited more than once, and equation (4)
ensures that the tour begins and ends at the depot, enforcing a closed circuit.
Subtours are not possible under this formalization. It is assumed that the underlying
network is symmetrical.

Multiobjective methods and routing problems

A multiobjective approach to solving routing problems is not new. General
discussions of multiobjective approaches to the analysis of spatial decisionmaking
can be found in Nijkamp {(1977) and Rietveld (1980). Multiobjective designs of
transportation networks are discussed by Current and Min (1986). The maximum
coverage/shortest path (MCSP) and maximum population/shortest path (MPSP)
problems, discussed by Current (1981) and Current et al (1985b), are conceptually
similar to the MVP. The problem in these cases is to find a path between specified
origin and destination nodes. The first objective is to maximize the number of
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intervening nodes served or covered by the path, whereas the second is to minimize
path length. It is only in exceptional circumstances that the optimal solution to the
first objective is also the optimal solution to the second. In the general case, the
objectives tend to be in conflict, and a number of optimal solutions will exist, each
representing a specific trade-off relationship between the two objectives. The set
of optimum solutions under all feasible trade-offs (the noninferior-solution set) is
similar to that shown for the MVP in figure 2.

One of the first steps needed to solve MVPs is therefore to identify a method
for generating the noninferior-solution set. Given the discrete nature of the
problem of interest, the constraint method was adopted to solve the MVPs, the
generation of the noninferior-solution set being broken into a number of single-
objective problems. Preference for the constraint method is justified below.

Cohon (1978) discusses four alternative techniques for generating a noninferior-
solution set, one of which, the ‘multiobjective simplex’ method, is a complex and
intriguing mathematical problem, not entirely solved (Cohon, 1978; Keller, 1985).
Current (1981) and Current et al (1985b) derive an approximation of the noninferior-
solution set for MCSP and MPSP problems by utilizing the ‘weighting’ method.
The two objectives are weighted by w and (1 —w), and are combined linearly as
shown in equation (7), below:

Z=wZ +(1-w)Z,. (7)

The problem is solved repeatedly as a single-objective problem, with a selection of
fixed values of w taken in the range 0 to 1 (see Cohon, 1978). The weighting o
method is most appropriately used where the weights themselves are of some
importance in the interpretation of the results. However, it can give poor and
inefficient coverage of the noninferior-solution set (Cohon, 1978), and its coverage X
may be incomplete in problems, such as the MVP, with discrete solution-spaces.
The ‘noninferior-solution set estimation’ (NISE) method, developed by Cohon
(1978) relies on the assumption that the noninferior-solution set is convex. This
clearly is not the case here, given the discrete nature of the problem addressed
(see figure 2). The ‘constraint’ method (Cohon and Marks, 1975; Marglin, 1967)
transforms a multiobjective problem into a finite number of single-objective
problems by optimizing for one objective while constraining the other to a
specified value. It is possible to examine the noninferior set by successively
incrementing the constraining objective, in this case the maximum penalty, P,
With P,,, set to zero, the circuit will be confined to the depot, and the reward will
be equal to the reward from the depot. At the other extreme, an extremely large
value of P,,, will allow the circuit to include all demand-points, and the total
reward available will be collected: the MVP in this case will always degenerate to
the TSP. The number of noninferior solutions found will be: (a) equal to the
number of values of P,,, used, in the case of a problem with a continuous solution
space; (b) less than or equal to the number of values of P,,, used, in the case of a
discrete problem, such as the MVP.
The MVP, which utilizes the constraint method, is a multiobjective generalization .
of the TSP, and can be broken into a number of single-objective problems. The
next problem therefore concerns the search for a suitable procedure to find the
single-objective solution. The search will commence with a discussion of the TSP
literature.

Solution approaches
The TSP is a member of a class of difficult combinatorial problems, termed
NP-hard (Papadimitriou, 1977), for which no algorithm is known that will execute
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in polynomial time, or in a time expressible as a polynomial function of the problem
size (Papadimitriou, 1977; Garey and Johnson, 1979). Algorithmic solutions to the
TSP have been reviewed by Bellmore and Nemhauser (1968), and Bodin et al (1983).

Exact-solution techniques for solving small TSPs include linear programming
coupled with a branch and bound algorithm (Bellmore and Malone, 1971; Dantzig
et al, 1954; 1959; Scott, 1971), and tree searching procedures (Crowder and
Padberg, 1980; Held and Karp, 1971; Karp, 1977; Knuth, 1976). However,
Bodin et al (1983) suggest that exact-solution techniques are impractical, given the
current computing resources, for all but the smallest of TSPs. The MVP is a TSP
with the added complexity that the set of nodes to be visited is not predetermined.
Any attempt at utilizing an exact-solution procedure at present will therefore prove
to be even less practical.

Heuristics offer a widely accepted alternative to exact-solution methods for the
TSP, and a great variety have been developed, based on successive improvements
to an initial, usually arbitrary, solution. One common process makes improvements
on a working subset by adding or subtracting nodes from it, with the constraint
that all nodes must be in the solution at the end of the process: an example is the
‘steepest-ascent one-point-move’ algorithm of Karg and Thompson (1964). A second
common method of improvement is by shuffling the sequence of nodes in the working
tour: examples of this include Bellmore and Nemhauser (1968), Cooper (1968),
Golden et al (1980), Gupta (1978), and Lin and Kernigham (1973). A somewhat
different ‘divide and conquer’ approach is used by Litke (1984). Points which are
close together are gathered, by inspection, into clusters, each cluster containing no
more than a specified number of points. An exhaustive search is then applied to
identify the optimal path, both between and within clusters. Because the clustering
is done by inspection, the algorithm can only be as good as the operator’s ability
to “see where the points are” (Litke, 1984, page 1229). Other heuristics have been
developed for special cases of the TSP: for example, see Corpaneto et al, 1984;
Cosmadakis and Papadimitriou, 1984; Garfinkel and Gilbert, 1978; Jongens and
Volgenant, 1985. There are heuristics developed to solve the ‘orienteering
problem’ (OP), a generalization of the TSP and conceptually similar to the MVP,
by Tisiligirides (1984) and Golden et al (1985). Algorithms designed to solve OPs,
namely the ‘S-algorithm’, ‘D-algorithm’ (Tsiligirides, 1984), and ‘knapsack algorithm’
(Golden et al, 1985) rely on the geometric nature of the OP, and do not enforce
the condition of a Hamiltonian circuit. The MVP algorithm proposed in this paper
was applied to a number of OP problems in order to evaluate its performance
against the OP algorithms proposed by Tsiligirides (1984) and Golden et al (1985).
The MVP algorithm was found to outperform heuristics written for the OP
(Keller, 1988).

With this in mind, in the next section we describe a heuristic to solve the MVP.
It incorporates the features of many of the approaches discussed above for the
TSP, but it also has additional steps, designed to search for the optimal subset of
nodes to be visited.

The MVP solution procedure

The MVP heuristic described below is the result of extensive experimentation, and
it represents the most satisfactory combination of operations found. As with any
heuristic, the particular sequence of operations which is most efficient for a given
problem will depend on the specific attributes of the problem, thus it is always
possible to fine tune the heuristic to a given data set. On the other hand, it is
desirable that the heuristic can operate efficiently over as wide a set of problems
as possible. As these two issues are necessarily in conflict, the approach we have
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taken is to construct a set of heuristic modules, or a ‘toolbox’, which can be
controlied interactively by the user.

The sequence of logical operations underlying the heuristic is presented in the
form of a flow chart in figure 3. Individual values of P, are defined as follows:
(a) Identify the penalty received (P,,) if all nodes are visited via some feasible i
route, but preferably by the route of the TSP solution. A
{b) Specify the number of points (k) by which the noninferior-solution set is to be -
approximated.

(¢) Commencing with P, = 0, increment P,,, for each single-objective analysis, by
an increment derived by dividing P, by k.

Once P,,, is identified, the next step is to search for all demand-points, j, that can
be visited directly from the depot without exceeding the penalty constraint:

de+I)jd <Pmax’ (8)

where d denotes the depot. Every node that satisfies this condition is identified

and placed in a vector, M. This step excludes any nodes which cannot be reached
within P,,,, and may therefore reduce the complexity of the problem, especially for
small values of P,_,,.

The next step is to generate some feasible starting-solution, §, from the members
in M. Keller (1985) describes three possible approaches, an interactive approach,
where the user intuitively identifies a starting-solution; and two random procedures,
one with probabilities of selection that are proportional to the reward at each node,
and the second with probabilities dependent on both reward and penalty. Any node
that is now a member of the ordered-solution vector, S, is removed from M.

Once a feasible starting-solution has been generated, the heuristic implements
two routines that attempt to reduce penalty by altering the route sequence while
maintaining membership of the present route. The first routine (routine 1 in
figure 3) searches for and eliminates self-crossing paths, which, by definition,
cannot be contained in the optimal route. The path § is self-crossing if there exist
two positions, i and j, within the sequence such that:

I,i,i+1+Pj,j+1 > 13i,]'+13i+1,/'+1 . (9)

Routine 2 sequentially drops every member in § out of its present position and
inserts it at every alternative position within the route-sequence. Each cycle of the
second routine identifies and implements that change which will result in the largest
decrease in penalty.

Once these two routines detect no further possible reduction in penalty, the
heuristic proceeds to search for possible increases in reward while remaining
within the limit imposed by P,,,. This is achieved by attempting to alter the
route-membership, by use of three strategies: ‘one in—zero out’ (routine 3);

‘one in—one out’ (routine 4); and ‘one in—two out’ (routine 5) in which the two
nodes moved out are adjacent to each other in the route-sequence. In each case,
all possible combinations of nodes in the ‘in’ (or §) set and the ‘out’ (or M) set,
are tested. Higher levels of node exchange clearly exist, such as a ‘two in—two out’ »
exchange, but they become increasingly complex: to search all combinations in an

‘x in—y out’ exchange will require in the order of m’(N —m)* steps.

If routines 3, 4, or 5 result in an improvement, the heuristic reverts to the first
two penalty-reduction routines. If all five routines fail to make improvements, two
further routines are called.

Experiments with the set of five routines, described thus far, showed that the
heuristic tended to favour the inclusion of a remote node with high-reward potential
over a cluster of low-reward nodes in close proximity to each other. This was
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found to be true even when the sum of all the rewards of the clustered nodes was
larger than the reward-potential of the individual large node. This is because, in
the absence of higher level node swaps as outlined earlier, a disproportionately
large node, once it has entered the route-sequence, will not be dropped unless its

Btart W Read input data and value for Pmax7

Identify M of length m

.4

Select method
of deriving
starting solution

Intuitive Logically defined
Identify § Identify § Identify §
of length m, of length m, of length m,
adjust M adjust M adjust M
| — Y pP™ ) |
R 4
|
., Search for self-crossing path
Routine 1 If improvements found adjust S
¥
. Try and shuffle route members
Routine 2 If improvements found adjust S
v
. Try adding a node from M
Routine 3 {one in-zero out)
If improvements found adjust and let C1 = 1, else 0
L 4
3 Try substituting a member of M for a member of §
Routine 4 (one in-one out)
If improvements found adjust and let C2 = 1, else 0
Try substituting two members of § for a member of M
Routine 5 | (one in-two out)
If improvements found adjust and let C3 = 1, else 0

Cl=0
No
Yes
C2=0
No
Yes
C3=0 1
No
Yes
. Temporarily eliminate members of §
Routine 6 If improvements found adjust and let C4 = 1, else 0
¥
C4 =0 P
No " No
Yes
Temporarily eliminate isolated node clusters Yes
ine 7 e
Routine If improvements found adjust and let C5 = 1, else 0 Stop
C5=0

Figure 3. The MVP heuristic procedure.
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reward-potential is less than the sum of the reward-potentials of at most two
adjacent nodes. A further routine (routine 6) was therefore added. It operates by
successively dropping, in turn, every node out of the present route-sequence, S, but
not returning it into M to be reconsidered for a swap. Each time a member of §
is dropped, the remaining route is evaluated using the five routines described
above. If an improvement is detected that yields a higher total reward-potential
than the route that included the member just dropped, then the improvement is
accepted as the new solution. The node temporarily removed from § is thereafter
placed in M. On the other hand, if no improvements can be detected, then the
presently removed member is returned into its old place in the route, and the next
member in the sequence is temporarily dropped.

This last routine is still incapable of detecting the type of situation illustrated in
figure 4. Here, an isolated cluster of nodes located near a disproportionally large
node (cluster of nodes A to E) can be replaced by another isolated cluster of nodes
(cluster of nodes 6 to 8), a replacement resulting in an increase in total reward
without exceeding the penalty constraint. None of the procedures described so far
would detect this. Routine 7 deals with this situation by first finding the link
associated with the highest penalty, called link 1. It subsequently finds the next
highest penalty links in the route, before and after link 1—link 2 and link 3,
respectively. Similarly, it identifies the next highest penalty links before and after
link 2 and link 3—link 4 and link 5, respectively, and so on. The routine repeats
this procedure until the pair of links found both connect into the depot. In the
hypothetical example shown in figure 4, this occurs in the case of link 4 and link 5.

Based on the assumption that all nodes lying between link 2 and link 1 form a
cluster of nodes removed far from the rest of the solution, the procedure continues
by temporarily removing that cluster of nodes from §. The first step is therefore
to link the origin node of link 2 with the terminal node of link 1, temporarily
omitting all nodes in between. A search is then made for possible improvement by
means of the first five routines, as in the previous case, and if this is successful the
omitted nodes are placed in M; otherwise, it is returned to §, and the nodes
between link 1 and link 3 are temporarily removed, and the procedure is repeated
as before. If no improvement results at any step, this routine will ultimately drop

Route before improvement detected by routine 7
Better solution identified by routine 7

Figure 4. Route improvement undetected by node exchange.
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all nodes of the last identified best route. .Given a-problem with a very large
number of nodes constrained by a relatively small value of P,,,, the result may be
a completely new route.

Performance evaluation

An interactive program that solves the MVP by combining the constraint method
and the MVP heuristic outlined above, was written in FORTRAN 77 and was
tested on an IBM 4381 computer. To demonstrate and evaluate the performance
of the heuristic, the program was applied to a set of twenty-five cities located in
West Germany, as shown in figure 5(a). Bonn, the capital, was used as the depot
and terminal node. The populations of the cities, shown in figure 6, were treated
as surrogates for the reward that could be collected if the cities were visited.
Intercity distances, also shown in figure 6, were used as surrogates for the
penalties incurred for travelling between them. .

Figure 7 shows a twenty-eight-solution approximation of the noninferior-solution
set.. Table 1 gives the total reward, total penalty, and exact route for each of the
twenty-eight solutions.

Solutions (routes) 1 to 5 cover nodes in close prox1m1ty to the urban concentration
of West Germany’s Ruhr Valley. . Solution.6 breaks from.the Ruhr Valley cluster
and includes the urban industrial concentration around .Frankfurt. At solution 9,
the maximum penalty has increased-sufficiently to allow the inclusion of the large
North Sea ports of Hamburg and Bremen, providing the Frankfurt cluster is dropped.
Solution 13 includes the rather large but isolated city of West Berlin. At solution 18
the large city of Munich is included for the first time. Figure 5(b) shows the
route of solution 28, which connects all twenty—five cities in a complete travelling
salesman tour.

Thus far, it has been assumed that reward can be collected 1nstantaneously upon
arrival at a node. However, it may be more realisti¢' in some applications to assume
that penalties accrue both for travelling along the links and for collecting reward.
The penalty for collecting reward might be taken to be a linear function, proportional
to some constant, , multiplied by the size of the reward. Equation (2) can

A

N
t
Size of
population’
(thousands)
0-99
100-249
250-499.
500-999
¥ 1000-1500
W 1500+

o Depot

0 150 km
S )

Figure 5. Twenty-five West German cities (a) their position, (b) and noninferior solution 28,
which connects all twenty-five cities.
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Distance matrix in km (distances are fastest, not necessarily the shortest) City
1
597 2
650 | 595 3
267 | 557 | 394 4
90 | 512 | 601 | 221 5
386 |693| 393 | 153 | 360 6
166 |607 | 492 | 112 ] 116] 251 7
75 |571| 568|189 | 76| 316 66 8
114 |593| 530 [ 152 | 102 291] 36] 33 9
691 | 886 | 457 | 438 | 645 236 | 530 | 595 | 570 10
259 | 360 | 558 | 270 | 172| 475 267 230 | 256 | 670 11
515 | 295 | 827 | 542 | 4281 747 | 523 486 | 512 942| 276 12
716 | 119| 690 | 678 [ 631] 868 | 726] 691 | 717 [1060| 479 | 348 13
524 |719| 290 | 271 | 478 | 119 363 | 428 | 403 | 167 503 | 775 | 893 14
367 |578 | 285 | 114| 321] 113 | 212 277 | 252 323} 351 628 | 748 | 156 15
347 |434| 381 | 123| 265 284 | 175 236 | 210 | 477 | 201 473 | 558 | 310 | 165 16
630 |825| 388 | 377 | 584 | 225 | 469 | 534 | 500 | 83| 609 | 881 | 999 | 115 | 262 | 416 17
69 {530| 572|190 | 28| 329 85| 48| 74 608| 190 | 446 | 649 | 441 { 200 | 250 | 547 18
319 | 285 | 636 | 348 | 234 | 553 | 320 | 292 | 318 | 746 | 82] 201 | 404 | 579 | 434 | 279 } 685 | 252 19
634 | 66| 592 | 619 | 571| 770 | 666 ) 629 | 655 [ 963| 419 | 354 | 98 | 795 | 650 | 496 | 901 | 589 | 344 20
469 | 138 | 441 | 449 | 380 600 | 475 438 | 464 | 793 | 215 | 383 | 257 | 626 | 481 | 326 | 735 { 398 | 258 | 165 21
694 | 251 | 653 | 674 | 605 | 825 | 700 | 663 | 689 [1018 | 440 | 534 | 287 | 851 | 708 | 551 | 957 | 623 { 483 | 180 [ 225 22
573 | 134 | 532 | 553 | 484 | 704 | 579 | 542 | 568 | 697 | 319 [ 420 | 220 | 730 | 585 | 430 | 836 | 502 | 362 | 122 | 104 | 121 23
290 | 377 754 | 461 | 254 | 668 | 354 | 317 | 343 | 861 197 | 208 | 509 | 694 | 549 | 394 | 800 | 262 | 128 | 436 | 386 {611 | 490 24
454 | 161 633 | 524 | 347 666 | 442 | 405 { 431 [ 859 | 195 | 204 | 280 | 692 | 547 | 392 | 798 | 365 | 120 | 220 | 192 {400 | 267 239 |25
2388858825232 838cs5 283358 s
§82 23 iigcies Tfrgiis
T £° da 2&5822 §22 §§>o
] c 3
Population (thousands)
1 Aachen 242 8 Diisseldorf 659 14 Hamburg 1708 20 Miinchen 1312
2 Augsburg 248 9 Essen 674 15 Hannover 550 21 Niirnberg 496
3 Berlin (West) 1967 10 Flensburg 50 16 Kassel 204 22 Passau 40
4 Bielefeld 315 11 Frankfurt 631 17 Kiel 261 23 Regensburg 131
5 Bonn 284 12 Freiburg 174 18 Kéln 1011 24 Saarbriicken 205
6 Bremen 571 13 Garmisch 30 19 Mannheim 312 25 Stuttgart 595
7 Dortmund 628

Figure 6. Intercity distance matrix and population figures for the twenty-five West German
cities studied. Source: Deutsche Centrale fiir Tourismus.
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therefore be rewritten as follows:
m
zZ, = 2. (P,iv1 +QR;) . (10)
i=1
We can now evaluate the response of the noninferior-solution set to changes in the
value of Q.

To evaluate the performance of the MVP heuristic, four additional noninferior-
solution sets were derived for four different values of Q. Each of the sets, shown
in figure 8, was approximated by sixteen solutions, obtained from sixteen values
of P,,,. To allow for an evaluation of the performance of the MVP heuristic,
each of the 16 x4, or 64, solutions was derived sixteen times, from independent
starting-solutions. - This resulted in 16 X 16 x4, or 1024, runs of the MVP heuristic.
Details concerning the characteristics of the different starting-solutions can be
found in Keller (1985). Of the sixteen runs made for every combination of P,
and Q, the one with the largest reward was treated as the optimal solution, and
was allocated to the noninferior-solution set. The results obtained for each of the
remaining fifteen runs were then evaluated against this best solution in order to
obtain performance measures, which include the percentage of runs in which the
best solution was found, the reward obtained in the worst solution encountered,
and the ratio of the average penalty to the smallest penalty.

Table 1. Routes in the noninferior-solution set.

Route Z, Z, Route sequence Running
time (s)
1 284 0 5 0.0
2 1295 56 5185 0.1
3 2628 211 518895 0.1
4 3256 258 5187985 0.1
5 3498 347 51879815 0.1
6 3887 584 518897115 0.1
7 4444 795 51818974115 0.6
8 4692 841 51861547985 0.8
9 6400 1003 5184151467985 1.2
10 6642 1092 51841514679815 0.7
11 7235 1223 51889746141516115 1.3
12 7477 1319 518189746141516115 1.5
13 8367 1422 51841531467985 1.8
14 8652 1573 5188974614316115 2.3
15 8998 1623 5188974156143115 32
16 9444 1738 5181897461431516115 2.9
17 9736 1817 5181897415614321115 5.6
18 10763 2003 518897151432120225115 6.9
19 11099 2019 518897461432120225115 7.5
20 11780 2154 5188974156143212320225115 3.7
21 12334 2394 5181897415614321232022511195 2.6
22 12539 2504 518189741561432123202252419115 53
23 12800 2717 51818974156141732123202252419115 7.8
24 13004 2891 5181897416156141732123202252419115 33
25 13054 2993 518189741615610171432123202252419115 2.9
26 13178 3217 518189741615614173212320225122419115 32
27 13268 3345 5181897416156101714321232220225122419115 22
28 13298 3496 518189741615610171432123222013225122419115 0.9

Note: The total reward, Z,, is the sum of the populations of the cities visited; the total
penalty, Z,, is expressed in kilometers travelled.

The route-sequence numbers identify the city and the order in which they were ‘visited'.
Refer to figure 5 for full identification.
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The probability of obtaining the best answer, in any one run of the heuristic,
averaged 0.74, reaching a low of 0.67 for one starting-technique, and a high of
0.89 for another. The worst departure from the best solution of all 1024 runs was
0.21, in terms of the reward objective. On average, the worst solutions encountered in
each set of sixteen repeat runs, obtained rewards 9% lower than the best solutions.
For all runs, the average decrease in reward compared with the best solution was 2%.
Table 1 shows the running times for the heuristic on an IBM 4381 computer.

The dominant objective of this paper is to introduce a practical, but difficult,
generalization of the TSP, and to show that it can be solved (even if not optimally).

A thorough examination of the heuristic is beyond the length of this paper, but a
single-sample problem is clearly not adequate to test in detail the performance of a
heuristic. A comparison with other tested data-sets is required. A more detailed
discussion of the performance of the heuristic against the above data set can be
found in Keller (1985). A comparison of the heuristic to a number of score OPs
has been discussed by Keller (1988).
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Figure 8. Generalized noninferior-solution sets, for various Q.
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Discussion
Any heuristic offers a trade-off between computational complexity and performance.
The performance of the MVP heuristic could be improved by including higher
level exchanges, but only at the expense of substantial increase in computing costs.
The decision to exclude them resulted in considerable loss of reward in a few
cases, but in general the rewards associated with inferior solutions were very close
to the best ones. The probability of reaching the best solution (found at least once
in a number of runs by means of different starting techniques) was found to be
high. The performance of the heuristic was therefore judged to be satisfactory.
The mathematical model used to represent and solve a real problem is always a
simplification, because it excludes unspecified or unquantifiable, but nevertheless
important, criteria. The solution derived may not represent the real-world ideal,
but rather, it may function as an indicator of a good solution given certain
assumptions. The MVP program was written in an interactive mode with this
point in mind, and gives the user the opportunity to evaluate the sensitivity of
solutions to the assumptions made, or to modify any solution in response to new

.d
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criteria. The user can evaluate the effects of changes in the route-sequence or in
the data from which it is derived.

The MVP was introduced as a form of generalization of the TSP, which is
appropriate in many practical situations. Further generalizations are possible,
and many can be incorporated into the solution procedure with little difficulty.
For example, the reward potentially available at a demand-node is often time
dependent. A vendor may find that the penalty of staying at one demand-point is
a linear function of time, but that the reward obtained shows diminishing returns
as the potential market is exhausted. It is also possible that the initial reward
obtained on arrival, shows an increasing return as the market becomes aware of
the presence of the vendor. Another form of time dependency occurs when reward
varies both in response to the vendor’s arrival and to the time of day. Both forms
are present in the example of a mobile lunch-vendor, for whom certain times of
day, namely conventional mealtimes, offer greater potential reward, and for whom
the rate of reward first increases and then decreases following arrival at a site.
Mobile-library branches, health clinics, and other public services appear to have
similar characteristics. Another example concerns the planning of a political
candidate’s canvass tour, before an election. The politician has only a limited
time-period in which to canvass; the candidate must canvass in as many locations
as possible during the time when the impact will be greatest. Such a time dependent
version of the MVP has been explored by Keller (1985).
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