Preparing and mixing acid solutions for the use in the Cosmoegnic
RadioNuc lide (CRN) Target Preparation Facility -
Bodo Bookhagen, UC Santa Barbara Geography Department
Standard Concentrations and Normality of Acids:
Hydrochloric Acid, HCI conc. (36\%): 12N ($\rho=1.19 \mathrm{~g} / \mathrm{mL})$
Nitric Acid, HNO_{3} c onc. (69\%): $15.8 \mathrm{~N}(\rho=1.42 \mathrm{~g} / \mathrm{mL})$
Sulfuric Acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$ (95.8\%): $36 \mathrm{~N}(\rho=1.84 \mathrm{~g} / \mathrm{mL}$)
Ammonium Hydroxide, $\mathrm{NH}_{4} \mathrm{OH}$ (29\%): 14.8 N ($\rho=0.90 \mathrm{~g} / \mathrm{mL}$)
Acetic Acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (99.8\%): 17.4N ($\rho=1.05 \mathrm{~g} / \mathrm{mL}$)
You use the following relation to calculate the volumes of a cid mixtures with a given nomality (N):
$\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2}$
$\mathrm{V}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2} / \mathrm{N}_{1}$
Example: Preparation of 6N Hydrochloric Acid (1:1 HCI)
$\mathrm{N}_{1}=12 \mathrm{~N}$ (conc. HCl)
$\mathrm{N}_{2}=6 \mathrm{~N}$
$\mathrm{V}_{2}=2000 \mathrm{~mL}$
$\mathrm{V}_{1}=2000 \mathrm{~mL} \times 6 \mathrm{~N} / 12 \mathrm{~N}$
$V_{1}=1000 \mathrm{~mL}$
To prepare a 2 L 6 N HCI solution, you mix 1L of conc. HCI with 1 L of milliQ water.

Acid	Nommality	Mixture to make a 2000mL solution
HCl	0.5 N	83 mL of conc. $\mathrm{HCl}(36 \%)+1917 \mathrm{~mL}$ of milliQ water
HCl	1 N	167mL of conc. $\mathrm{HCl}(36 \%)+1833 \mathrm{~mL}$ of milliQ water
HCl	6 N	1000 mL of conc. $\mathrm{HCl}(36 \%)+1000 \mathrm{~mL}$ of milliQ water
HCl	8 N	1333 mL of conc. $\mathrm{HCl}(36 \%)+667 \mathrm{~mL}$ of milliQ water

Making a 1\% Hydrofluoric and 1\%Nitric acid mixture
For a 20 L solution, you use 49% HF: 0.2 / $0.49=0.41 \mathrm{~L}$ and 69% HNO3: $0.2 / 0.69=0.29 \mathrm{~L}$ and 19.3 L milliQ water.

Making a 5\% Hydrofluoric and 5\% Nitric acid mixture
For a 20 L solution, you use 49% HF: $1 / 0.49=2.04 \mathrm{~L}$
and 69% HNO 3: $1 / 0.69=1.45 \mathrm{~L}$ and 16.5 L milliQ water.

Mixing of 0.4 M Oxalic acid $(\mathrm{COOH})_{2}$
Molar weight of Oxalic acid, $\mathrm{M}=126.07 \mathrm{~g} / \mathrm{mol}$

Mixing a 2 liter 0.4 M oxalic a cid solution:
$126.07 \mathrm{~g} / \mathrm{mol} \times 0.4 \mathrm{~mol} / \mathrm{I} \times 2=100.9 \mathrm{~g}$

Preparing and mixing acid solutions for the use in the Cosmoegnic
RadioNuclide (CRN) Target Preparation Facility Bodo Bookhagen, UC Santa Barbara Geography Department

Mixing a 1 liter 0.4 M oxalic acid solution:
$126.07 \mathrm{~g} / \mathrm{mol} \times 0.4 \mathrm{~mol} / \mathrm{l}=50.5 \mathrm{~g}$
Put the weight of 100.9 g into the 2L LDPE bottle and add 2 L of water. Close lid, shake well - it may take up to several hours until all crystals are dissolved.

